CMS 3D CMS Logo

nanoDQM_cff.py
Go to the documentation of this file.
1 import FWCore.ParameterSet.Config as cms
2 import copy
3 
4 from PhysicsTools.NanoAOD.nanoDQM_cfi import nanoDQM
7 
8 
9 _vplots80X = nanoDQM.vplots.clone()
10 # Tau plots
11 _tauPlots80X = cms.VPSet()
12 for plot in _vplots80X.Tau.plots:
13  if (plot.name.value().find("MVA")>-1 and plot.name.value().find("2017")>-1) or (plot.name.value().find("AntiEle")>-1 and plot.name.value().find("2018")>-1) or (plot.name.value().find("AntiEleDeadECal")>-1) or (plot.name.value().find("DeepTau")>-1):
14  continue
15  _tauPlots80X.append(plot)
16 _tauPlots80X.extend([Plot1D('idMVAnewDM', 'idMVAnewDM', 11, -0.5, 10.5, 'IsolationMVArun2v1DBnewDMwLT ID working point: int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight, 5 = VTight, 6 = VVTight'),
17  Plot1D('idMVAoldDM', 'idMVAoldDM', 11, -0.5, 10.5, 'IsolationMVArun2v1DBnewDMwLT ID working point: int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight, 5 = VTight, 6 = VVTight'),
18  Plot1D('idMVAoldDMdR03', 'idMVAoldDMdR03', 11, -0.5, 10.5, 'IsolationMVArun2v1DBdR03oldDMwLT ID working point: int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight, 5 = VTight, 6 = VVTight'),
19  Plot1D('rawMVAnewDM', 'rawMVAnewDM', 20, -1, 1, 'byIsolationMVArun2v1DBnewDMwLT raw output discriminator'),
20  Plot1D('rawMVAoldDM', 'rawMVAoldDM', 20, -1, 1, 'byIsolationMVArun2v1DBnewDMwLT raw output discriminator'),
21  Plot1D('rawMVAoldDMdR03', 'rawMVAoldDMdR03', 20, -1, 1, 'byIsolationMVArun2v1DBdR03oldDMwLT raw output discriminator'),
22  Plot1D('idAntiEle', 'idAntiEle', 11, -0.5, 10.5, 'Anti-electron MVA discriminator V6: int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight, 5 = VTight'),
23  Plot1D('rawAnti', 'rawAntiEle', 20, -100, 100, 'Anti-electron MVA discriminator V6 raw output discriminator'),
24  Plot1D('rawAntiEleCat', 'rawAntiEleCat', 17, -1.5, 15.5, 'Anti-electron MVA discriminator V6 category')
25 ])
26 _vplots80X.Tau.plots = _tauPlots80X
27 run2_miniAOD_80XLegacy.toModify(nanoDQM,
28  vplots = _vplots80X
29 )
30 _tauPlotsPreV9 = cms.VPSet()
31 for plot in nanoDQM.vplots.Tau.plots:
32  if plot.name.value()!="idDecayModeOldDMs":
33  _tauPlotsPreV9.append(plot)
34 _tauPlotsPreV9.extend([
35  Plot1D('idDecayMode', 'idDecayMode', 2, -0.5, 1.5, "tauID('decayModeFinding')"),
36  Plot1D('idDecayModeNewDMs', 'idDecayModeNewDMs', 2, -0.5, 1.5, "tauID('decayModeFindingNewDMs')"),
37  Plot1D('idAntiEle', 'idAntiEle', 11, -0.5, 10.5, 'Anti-electron MVA discriminator V6: int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight, 5 = VTight'),
38  Plot1D('idAntiEle2018', 'idAntiEle2018', 11, -0.5, 10.5, 'Anti-electron MVA discriminator V6 (2018): int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight, 5 = VTight'),
39  Plot1D('idMVAnewDM2017v2', 'idMVAnewDM2017v2', 11, -0.5, 10.5, 'IsolationMVArun2v1DBnewDMwLT ID working point (2017v2): int 1 = VVLoose, 2 = VLoose, 3 = Loose, 4 = Medium, 5 = Tight, 6 = VTight, 7 = VVTight'),
40  Plot1D('idMVAoldDM', 'idMVAoldDM', 11, -0.5, 10.5, 'IsolationMVArun2v1DBoldDMwLT ID working point: int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight, 5 = VTight, 6 = VVTight'),
41  Plot1D('idMVAoldDM2017v1', 'idMVAoldDM2017v1', 11, -0.5, 10.5, 'IsolationMVArun2v1DBoldDMwLT ID working point (2017v1): int 1 = VVLoose, 2 = VLoose, 3 = Loose, 4 = Medium, 5 = Tight, 6 = VTight, 7 = VVTight'),
42  Plot1D('idMVAoldDM2017v2', 'idMVAoldDM2017v2', 11, -0.5, 10.5, 'IsolationMVArun2v1DBoldDMwLT ID working point (2017v2): int 1 = VVLoose, 2 = VLoose, 3 = Loose, 4 = Medium, 5 = Tight, 6 = VTight, 7 = VVTight'),
43  Plot1D('idMVAoldDMdR032017v2', 'idMVAoldDMdR032017v2', 11, -0.5, 10.5, 'IsolationMVArun2v1DBdR03oldDMwLT ID working point (217v2): int 1 = VVLoose, 2 = VLoose, 3 = Loose, 4 = Medium, 5 = Tight, 6 = VTight, 7 = VVTight'),
44  Plot1D('rawAntiEle', 'rawAntiEle', 20, -100, 100, 'Anti-electron MVA discriminator V6 raw output discriminator'),
45  Plot1D('rawAntiEle2018', 'rawAntiEle2018', 20, -100, 100, 'Anti-electron MVA discriminator V6 raw output discriminator (2018)'),
46  Plot1D('rawAntiEleCat', 'rawAntiEleCat', 17, -1.5, 15.5, 'Anti-electron MVA discriminator V6 category'),
47  Plot1D('rawAntiEleCat2018', 'rawAntiEleCat2018', 17, -1.5, 15.5, 'Anti-electron MVA discriminator V6 category (2018)'),
48  Plot1D('rawMVAnewDM2017v2', 'rawMVAnewDM2017v2', 20, -1, 1, 'byIsolationMVArun2v1DBnewDMwLT raw output discriminator (2017v2)'),
49  Plot1D('rawMVAoldDM', 'rawMVAoldDM', 20, -1, 1, 'byIsolationMVArun2v1DBoldDMwLT raw output discriminator'),
50  Plot1D('rawMVAoldDM2017v1', 'rawMVAoldDM2017v1', 20, -1, 1, 'byIsolationMVArun2v1DBoldDMwLT raw output discriminator (2017v1)'),
51  Plot1D('rawMVAoldDM2017v2', 'rawMVAoldDM2017v2', 20, -1, 1, 'byIsolationMVArun2v1DBoldDMwLT raw output discriminator (2017v2)'),
52  Plot1D('rawMVAoldDMdR032017v2', 'rawMVAoldDMdR032017v2', 20, -1, 1, 'byIsolationMVArun2v1DBdR03oldDMwLT raw output discriminator (2017v2)')
53 ])
54 
55 (run2_nanoAOD_92X | run2_nanoAOD_94XMiniAODv1 | run2_nanoAOD_94XMiniAODv2 | run2_nanoAOD_94X2016 | run2_nanoAOD_102Xv1 | run2_nanoAOD_106Xv1).toModify(nanoDQM.vplots.Tau, plots = _tauPlotsPreV9)
56 
57 _boostedTauPlotsV10 = cms.VPSet()
58 for plot in nanoDQM.vplots.boostedTau.plots:
59  _boostedTauPlotsV10.append(plot)
60 _boostedTauPlotsV10.extend([
61  Plot1D('idMVAoldDMdR032017v2', 'idMVAoldDMdR032017v2', 11, -0.5, 10.5, 'IsolationMVArun2017v2DBoldDMdR0p3wLT ID working point (2017v2): int 1 = VVLoose, 2 = VLoose, 3 = Loose, 4 = Medium, 5 = Tight, 6 = VTight, 7 = VVTight'),
62  Plot1D('rawMVAoldDMdR032017v2', 'rawMVAoldDMdR032017v2', 20, -1, 1, 'byIsolationMVArun2017v2DBoldDMdR0p3wLT raw output discriminator (2017v2)')
63 ])
64 
65 (run2_nanoAOD_106Xv2).toModify(nanoDQM.vplots.boostedTau, plots = _boostedTauPlotsV10)
66 
67 _METFixEE2017_DQMentry = nanoDQM.vplots.MET.clone()
68 _METFixEE2017_plots = cms.VPSet()
69 for plot in _METFixEE2017_DQMentry.plots:
70  if plot.name.value().find("fiducial")>-1: continue
71  _METFixEE2017_plots.append(plot)
72 _METFixEE2017_DQMentry.plots = _METFixEE2017_plots
73 for modifier in run2_nanoAOD_94XMiniAODv1, run2_nanoAOD_94XMiniAODv2:
74  modifier.toModify(nanoDQM.vplots, METFixEE2017 = _METFixEE2017_DQMentry)
75 
76 _Electron_plots_2016 = copy.deepcopy(nanoDQM.vplots.Electron.plots)
77 _Electron_plots_2016.append(Plot1D('cutBased_HLTPreSel', 'cutBased_HLTPreSel', 2, -0.5, 1.5, 'cut-based HLT pre-selection ID'))
78 _Electron_plots_2016.append(Plot1D('cutBased_Spring15', 'cutBased_Spring15', 5, -0.5, 4.5, 'cut-based Spring15 ID (0:fail, 1:veto, 2:loose, 3:medium, 4:tight)'))
79 _Electron_plots_2016.append(Plot1D('mvaSpring16GP', 'mvaSpring16GP', 20, -1, 1, 'MVA Spring16 general-purpose ID score'))
80 _Electron_plots_2016.append(Plot1D('mvaSpring16GP_WP80', 'mvaSpring16GP_WP80', 2, -0.5, 1.5, 'MVA Spring16 general-purpose ID WP80'))
81 _Electron_plots_2016.append(Plot1D('mvaSpring16GP_WP90', 'mvaSpring16GP_WP90', 2, -0.5, 1.5, 'MVA Spring16 general-purpose ID WP90'))
82 _Electron_plots_2016.append(Plot1D('mvaSpring16HZZ', 'mvaSpring16HZZ', 20, -1, 1, 'MVA Spring16 HZZ ID score'))
83 _Electron_plots_2016.append(Plot1D('mvaSpring16HZZ_WPL', 'mvaSpring16HZZ_WPL', 2, -0.5, 1.5, 'MVA Spring16 HZZ ID loose WP'))
84 _Electron_plots_2016.append(NoPlot('vidNestedWPBitmapSpring15'))
85 
86 #putting back the fall17V1 plots for non v9 case
87 _Electron_plots_withFall17V1 = copy.deepcopy(nanoDQM.vplots.Electron.plots)
88 _Electron_plots_withFall17V1.append(Plot1D('cutBased_Fall17_V1', 'cutBased_Fall17_V1', 5, -0.5, 4.5, 'cut-based ID Fall17 V1 (0:fail, 1:veto, 2:loose, 3:medium, 4:tight)'))
89 _Electron_plots_withFall17V1.append(Plot1D('mvaFall17V1Iso', 'mvaFall17V1Iso', 20, -1, 1, 'MVA Iso ID V1 score'))
90 _Electron_plots_withFall17V1.append(Plot1D('mvaFall17V1Iso_WP80', 'mvaFall17V1Iso_WP80', 2, -0.5, 1.5, 'MVA Iso ID V1 WP80'))
91 _Electron_plots_withFall17V1.append(Plot1D('mvaFall17V1Iso_WP90', 'mvaFall17V1Iso_WP90', 2, -0.5, 1.5, 'MVA Iso ID V1 WP90'))
92 _Electron_plots_withFall17V1.append(Plot1D('mvaFall17V1Iso_WPL', 'mvaFall17V1Iso_WPL', 2, -0.5, 1.5, 'MVA Iso ID V1 loose WP'))
93 _Electron_plots_withFall17V1.append(Plot1D('mvaFall17V1noIso', 'mvaFall17V1noIso', 20, -1, 1, 'MVA noIso ID V1 score'))
94 _Electron_plots_withFall17V1.append(Plot1D('mvaFall17V1noIso_WP80', 'mvaFall17V1noIso_WP80', 2, -0.5, 1.5, 'MVA noIso ID V1 WP80'))
95 _Electron_plots_withFall17V1.append(Plot1D('mvaFall17V1noIso_WP90', 'mvaFall17V1noIso_WP90', 2, -0.5, 1.5, 'MVA noIso ID V1 WP90'))
96 _Electron_plots_withFall17V1.append(Plot1D('mvaFall17V1noIso_WPL', 'mvaFall17V1noIso_WPL', 2, -0.5, 1.5, 'MVA noIso ID V1 loose WP'))
97 
98 _Photon_plots_2016 = copy.deepcopy(nanoDQM.vplots.Photon.plots)
99 _Photon_plots_2016.append(Plot1D('cutBased', 'cutBased', 4, -0.5, 3.5, 'cut-based Spring16-V2p2 ID (0:fail, 1::loose, 2:medium, 3:tight)'))
100 _Photon_plots_2016.append(Plot1D('cutBased17Bitmap', 'cutBased17Bitmap', 8, -0.5, 7.5, 'cut-based Fall17-94X-V1 ID bitmap, 2^(0:loose, 1:medium, 2:tight)'))
101 _Photon_plots_2016.append(Plot1D('mvaID17', 'mvaID17', 20, -1, 1, 'MVA Fall17v1p1 ID score'))
102 _Photon_plots_2016.append(Plot1D('mvaID17_WP80', 'mvaID17_WP80', 2, -0.5, 1.5, 'MVA Fall17v1p1 ID WP80'))
103 _Photon_plots_2016.append(Plot1D('mvaID17_WP90', 'mvaID17_WP90', 2, -0.5, 1.5, 'MVA Fall17v1p1 ID WP90'))
104 
105 _FatJet_plots_80x = copy.deepcopy(nanoDQM.vplots.FatJet.plots)
106 _FatJet_plots_80x.append(Plot1D('msoftdrop_chs', 'msoftdrop_chs', 20, -300, 300, 'Legacy uncorrected soft drop mass with CHS'))
107 
108 _Flag_plots_80x = copy.deepcopy(nanoDQM.vplots.Flag.plots)
109 _Flag_plots_80x.append(Plot1D('BadGlobalMuon', 'BadGlobalMuon', 2, -0.5, 1.5, 'Bad muon flag'))
110 _Flag_plots_80x.append(Plot1D('CloneGlobalMuon', 'CloneGlobalMuon', 2, -0.5, 1.5, 'Clone muon flag'))
111 
112 for modifier in run2_miniAOD_80XLegacy, run2_nanoAOD_94X2016:
113  modifier.toModify(nanoDQM.vplots.Electron, plots = _Electron_plots_2016)
114  modifier.toModify(nanoDQM.vplots.Photon, plots = _Photon_plots_2016)
115 run2_miniAOD_80XLegacy.toModify(nanoDQM.vplots.FatJet, plots = _FatJet_plots_80x)
116 run2_miniAOD_80XLegacy.toModify(nanoDQM.vplots.Flag, plots = _Flag_plots_80x)
117 (run2_nanoAOD_92X | run2_nanoAOD_94XMiniAODv1 | run2_nanoAOD_94XMiniAODv2 | run2_nanoAOD_94X2016 | run2_nanoAOD_102Xv1).toModify(nanoDQM.vplots.Electron, plots=_Electron_plots_withFall17V1)
118 
119 run2_miniAOD_80XLegacy.toModify(nanoDQM.vplots, IsoTrack = None)
120 
121 
122 nanoDQMMC = nanoDQM.clone()
123 nanoDQMMC.vplots.Electron.sels.Prompt = cms.string("genPartFlav == 1")
124 nanoDQMMC.vplots.LowPtElectron.sels.Prompt = cms.string("genPartFlav == 1")
125 nanoDQMMC.vplots.Muon.sels.Prompt = cms.string("genPartFlav == 1")
126 nanoDQMMC.vplots.Photon.sels.Prompt = cms.string("genPartFlav == 1")
127 nanoDQMMC.vplots.Tau.sels.Prompt = cms.string("genPartFlav == 5")
128 nanoDQMMC.vplots.Jet.sels.Prompt = cms.string("genJetIdx != 1")
129 nanoDQMMC.vplots.Jet.sels.PromptB = cms.string("genJetIdx != 1 && hadronFlavour == 5")
130 
131 from DQMServices.Core.DQMQualityTester import DQMQualityTester
132 nanoDQMQTester = DQMQualityTester(
133  qtList = cms.untracked.FileInPath('PhysicsTools/NanoAOD/test/dqmQualityTests.xml'),
134  prescaleFactor = cms.untracked.int32(1),
135  testInEventloop = cms.untracked.bool(False),
136  qtestOnEndLumi = cms.untracked.bool(False),
137  verboseQT = cms.untracked.bool(True)
138 )
139 
140 _modifiers = ( run2_miniAOD_80XLegacy |
141  run2_nanoAOD_94XMiniAODv1 |
142  run2_nanoAOD_94XMiniAODv2 |
143  run2_nanoAOD_94X2016 |
144  run2_nanoAOD_102Xv1 |
145  run2_nanoAOD_106Xv1 )
146 _modifiers.toModify(nanoDQM.vplots, LowPtElectron = None)
147 _modifiers.toModify(nanoDQMMC.vplots, LowPtElectron = None)
148 
149 nanoHarvest = cms.Sequence( nanoDQMQTester )
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
Definition: FindCaloHit.cc:19