CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
Namespaces | Functions | Variables
isotrackTrainRegressor.py File Reference

Go to the source code of this file.

Namespaces

 isotrackTrainRegressor
 

Functions

def isotrackTrainRegressor.fac0
 
def isotrackTrainRegressor.fac1
 
def isotrackTrainRegressor.fac2
 
def isotrackTrainRegressor.propweights
 

Variables

tuple isotrackTrainRegressor._ = plt.plot(lims, lims)
 
list isotrackTrainRegressor.a0 = [0.973, 0.998, 0.992, 0.965 ]
 marinas correction form More...
 
list isotrackTrainRegressor.a1 = [0, -0.318, -0.261, -0.406]
 
list isotrackTrainRegressor.a2 = [0, 0, 0.047, 0.089]
 
list isotrackTrainRegressor.cols_to_minmax = ['t_delta', 't_hmaxNearP','t_emaxNearP', 't_hAnnular', 't_eAnnular','t_pt','t_nVtx','t_ieta','t_eHcal10', 't_eHcal30','t_rhoh','t_eHcal_x']
 
 isotrackTrainRegressor.data = df.values
 
tuple isotrackTrainRegressor.df = pd.read_pickle(fName)
 
tuple isotrackTrainRegressor.dop = (X_test[:,16]/X_test[:,13])
 
tuple isotrackTrainRegressor.eop = (X_test[:,15]/X_test[:,13])
 
tuple isotrackTrainRegressor.fName = parser.parse_args()
 
tuple isotrackTrainRegressor.history = model.fit(X_train,Y_train , batch_size=5000, epochs=100, validation_split=0.2, verbose=1,sample_weight=propweights(Y_train))
 
list isotrackTrainRegressor.keya = []
 
list isotrackTrainRegressor.lims = [0, 200]
 
list isotrackTrainRegressor.marinascorr = X_test[:,15]
 
list isotrackTrainRegressor.maxa = []
 
tuple isotrackTrainRegressor.mcorrval = vec0(abs(X_test[:,17]))
 
tuple isotrackTrainRegressor.meany = np.mean(Y_train)
 
list isotrackTrainRegressor.mina = []
 
tuple isotrackTrainRegressor.model = Sequential()
 
tuple isotrackTrainRegressor.modv = parser.parse_args()
 
int isotrackTrainRegressor.ntest = 20000
 
tuple isotrackTrainRegressor.parser = argparse.ArgumentParser()
 
list isotrackTrainRegressor.pmom = X_test[:,13]
 
tuple isotrackTrainRegressor.preds = model.predict(X_test[:,0:12])
 
tuple isotrackTrainRegressor.RMS = keras.optimizers.RMSprop(lr=0.001, rho=0.9)
 
tuple isotrackTrainRegressor.stdy = np.std(Y_train)
 
list isotrackTrainRegressor.targets = data[:,12]
 
list isotrackTrainRegressor.testindx = data.shape[0]
 
list isotrackTrainRegressor.uncorrected = X_test[:,15]
 
tuple isotrackTrainRegressor.vec0 = np.vectorize(fac0)
 
tuple isotrackTrainRegressor.vec1 = np.vectorize(fac1)
 
tuple isotrackTrainRegressor.vec2 = np.vectorize(fac2)
 
list isotrackTrainRegressor.X_test = data[testindx:,:]
 
list isotrackTrainRegressor.X_train = data[:testindx,0:12]
 
list isotrackTrainRegressor.Y_train = data[:testindx,12]