|
tuple | isotrackTrainRegressor._ = plt.plot(lims, lims) |
|
list | isotrackTrainRegressor.a0 = [0.973, 0.998, 0.992, 0.965 ] |
| marinas correction form More...
|
|
list | isotrackTrainRegressor.a1 = [0, -0.318, -0.261, -0.406] |
|
list | isotrackTrainRegressor.a2 = [0, 0, 0.047, 0.089] |
|
list | isotrackTrainRegressor.cols_to_minmax = ['t_delta', 't_hmaxNearP','t_emaxNearP', 't_hAnnular', 't_eAnnular','t_pt','t_nVtx','t_ieta','t_eHcal10', 't_eHcal30','t_rhoh','t_eHcal_x'] |
|
| isotrackTrainRegressor.data = df.values |
|
tuple | isotrackTrainRegressor.df = pd.read_pickle(fName) |
|
tuple | isotrackTrainRegressor.dop = (X_test[:,16]/X_test[:,13]) |
|
tuple | isotrackTrainRegressor.eop = (X_test[:,15]/X_test[:,13]) |
|
tuple | isotrackTrainRegressor.fName = parser.parse_args() |
|
tuple | isotrackTrainRegressor.history = model.fit(X_train,Y_train , batch_size=5000, epochs=100, validation_split=0.2, verbose=1,sample_weight=propweights(Y_train)) |
|
list | isotrackTrainRegressor.keya = [] |
|
list | isotrackTrainRegressor.lims = [0, 200] |
|
list | isotrackTrainRegressor.marinascorr = X_test[:,15] |
|
list | isotrackTrainRegressor.maxa = [] |
|
tuple | isotrackTrainRegressor.mcorrval = vec0(abs(X_test[:,17])) |
|
tuple | isotrackTrainRegressor.meany = np.mean(Y_train) |
|
list | isotrackTrainRegressor.mina = [] |
|
tuple | isotrackTrainRegressor.model = Sequential() |
|
tuple | isotrackTrainRegressor.modv = parser.parse_args() |
|
int | isotrackTrainRegressor.ntest = 20000 |
|
tuple | isotrackTrainRegressor.parser = argparse.ArgumentParser() |
|
list | isotrackTrainRegressor.pmom = X_test[:,13] |
|
tuple | isotrackTrainRegressor.preds = model.predict(X_test[:,0:12]) |
|
tuple | isotrackTrainRegressor.RMS = keras.optimizers.RMSprop(lr=0.001, rho=0.9) |
|
tuple | isotrackTrainRegressor.stdy = np.std(Y_train) |
|
list | isotrackTrainRegressor.targets = data[:,12] |
|
list | isotrackTrainRegressor.testindx = data.shape[0] |
|
list | isotrackTrainRegressor.uncorrected = X_test[:,15] |
|
tuple | isotrackTrainRegressor.vec0 = np.vectorize(fac0) |
|
tuple | isotrackTrainRegressor.vec1 = np.vectorize(fac1) |
|
tuple | isotrackTrainRegressor.vec2 = np.vectorize(fac2) |
|
list | isotrackTrainRegressor.X_test = data[testindx:,:] |
|
list | isotrackTrainRegressor.X_train = data[:testindx,0:12] |
|
list | isotrackTrainRegressor.Y_train = data[:testindx,12] |
|