|
tuple | isotrackApplyRegressor.barrelflag = parser.parse_args() |
|
list | isotrackApplyRegressor.branchespu = ['t_Run','t_Event','t_nVtx','t_ieta','t_iphi','t_p','t_pt','t_gentrackP','t_eMipDR','t_eHcal','t_eHcal10','t_eHcal30','t_hmaxNearP','t_emaxNearP','t_hAnnular','t_eAnnular','t_rhoh'] |
|
| isotrackApplyRegressor.corrfac = preds/uncorrected_values |
|
| isotrackApplyRegressor.data = df.values |
|
list | isotrackApplyRegressor.df = dfspu[keepvars] |
|
tuple | isotrackApplyRegressor.dfspu = pd.DataFrame.from_dict(dictpu) |
|
tuple | isotrackApplyRegressor.dictpu = tree1.arrays(branches=branchespu) |
|
tuple | isotrackApplyRegressor.eventnumarray = np.arange(0,X_train.shape[0],1,dtype=int) |
|
tuple | isotrackApplyRegressor.fileo = np.hstack((eventnumarray,ietaarray,corrfac)) |
|
tuple | isotrackApplyRegressor.fName1 = parser.parse_args() |
|
tuple | isotrackApplyRegressor.foutput = parser.parse_args() |
|
list | isotrackApplyRegressor.ietaarray = dfspu['t_ieta'] |
|
int | isotrackApplyRegressor.k = 0 |
|
list | isotrackApplyRegressor.keepvars = ['t_nVtx', 't_ieta', 't_eHcal10', 't_eHcal30', 't_delta', 't_hmaxNearP','t_emaxNearP', 't_hAnnular', 't_eAnnular', 't_rhoh', 't_pt','t_eHcal', 't_p', 't_eMipDR'] |
|
list | isotrackApplyRegressor.maxa = [138, 15, 138.26640254695667, 155.83508832909865, 50.9643486259738, 17.140547914961605, 2870.424876287056, 35.727171580074355, 17.763740802183747, 26.38359781195008, 59.169594172331905, 133.07561272289604, 122.8542027361691, 59.977312414583295, 0.9999987781047821, 133.07561272289604, 50.9643486259738, 15] |
|
list | isotrackApplyRegressor.mina = [20, -15, 17.33086721925065, 17.655660001095384, 0.0, -1.0, -1.0, 0.0, -5.33359869197011, 4.093925265397289, 20.783629520782718, 16.998163268435746, 20.000221125315875, 40.074083721419896, 0.0, 16.998163268435746, 0.0, -15] |
|
list | isotrackApplyRegressor.mipdr = dfspu['t_eMipDR'] |
|
tuple | isotrackApplyRegressor.model = load_model(modeln) |
|
tuple | isotrackApplyRegressor.modeln = parser.parse_args() |
|
list | isotrackApplyRegressor.normkey = ['t_nVtx', 't_ieta', 't_eHcal10', 't_eHcal30', 't_delta', 't_hmaxNearP', 't_emaxNearP', 't_hAnnular', 't_eAnnular', 't_rhoh', 't_pt', 't_eHcal'] |
|
list | isotrackApplyRegressor.parray = dfspu['t_p'] |
|
tuple | isotrackApplyRegressor.parser = argparse.ArgumentParser() |
|
tuple | isotrackApplyRegressor.preds = model.predict(X_train,verbose=1) |
|
string | isotrackApplyRegressor.tag = 'barrel' |
|
tuple | isotrackApplyRegressor.tree1 = uproot.open(fName1,xrootdsource=dict(chunkbytes=1024**3, limitbytes=1024**3)) |
|
list | isotrackApplyRegressor.uncorrected_values = df['t_eHcal_xun'] |
|
list | isotrackApplyRegressor.var = ['t_nVtx', 't_ieta', 't_eHcal10', 't_eHcal30', 't_delta', 't_hmaxNearP', 't_emaxNearP', 't_hAnnular', 't_eAnnular', 't_rhoh', 't_pt', 't_eHcal_x', 't_eHcal_y', 't_p', 't_eMipDR', 't_eHcal_xun', 't_delta_un', 't_ieta_un'] |
| if using global norm cols_to_minmax = ['t_delta', 't_hmaxNearP','t_emaxNearP', 't_hAnnular', 't_eAnnular','t_pt','t_nVtx','t_ieta','t_eHcal10', 't_eHcal30','t_rhoh','t_eHcal'] df[cols_to_minmax] = df[cols_to_minmax].apply(lambda x: (x - x.min()) / (x.max() - x.min()) if (x.max() - x.min() > 0) else 1.0/200.0) More...
|
|
list | isotrackApplyRegressor.X_train = data[:,0:12] |
|