CMS 3D CMS Logo

parseHFPhase1AlgoDescription.cc
Go to the documentation of this file.
1 #include <cfloat>
2 
5 
6 // Phase 1 HF reco algorithm headers
9 
10 std::unique_ptr<AbsHFPhase1Algo> parseHFPhase1AlgoDescription(const edm::ParameterSet& ps) {
11  std::unique_ptr<AbsHFPhase1Algo> algo;
12 
13  const std::string& className = ps.getParameter<std::string>("Class");
14 
15  const bool isHFSimpleTimeCheck = className == "HFSimpleTimeCheck";
16  if (isHFSimpleTimeCheck || className == "HFFlexibleTimeCheck") {
17  const std::vector<double>& energyWeightsVec = ps.getParameter<std::vector<double> >("energyWeights");
18  const unsigned soiPhase = ps.getParameter<unsigned>("soiPhase");
19  const float timeShift = ps.getParameter<double>("timeShift");
20  const float triseIfNoTDC = ps.getParameter<double>("triseIfNoTDC");
21  const float tfallIfNoTDC = ps.getParameter<double>("tfallIfNoTDC");
22  const bool rejectAllFailures = ps.getParameter<bool>("rejectAllFailures");
23  const float minChargeForUndershoot = ps.getParameter<double>("minChargeForUndershoot");
24  const float minChargeForOvershoot = ps.getParameter<double>("minChargeForOvershoot");
25  const bool alwaysCalculateQAsymmetry = ps.getParameter<bool>("alwaysCalculateQAsymmetry");
26 
28  const unsigned sz = sizeof(energyWeights) / sizeof(energyWeights[0][0]);
29 
30  if (energyWeightsVec.size() == sz) {
31  std::pair<float, float> tlimits[2];
32  if (isHFSimpleTimeCheck) {
33  // Must specify the time limits explicitly for this algorithm
34  const std::vector<double>& tlimitsVec = ps.getParameter<std::vector<double> >("tlimits");
35  if (tlimitsVec.size() == 4) {
36  tlimits[0] = std::pair<float, float>(tlimitsVec[0], tlimitsVec[1]);
37  tlimits[1] = std::pair<float, float>(tlimitsVec[2], tlimitsVec[3]);
38  } else
39  return algo;
40  } else {
41  // Use "all pass" time limits values, just in case
42  tlimits[0] = std::pair<float, float>(-FLT_MAX, FLT_MAX);
43  tlimits[1] = tlimits[0];
44  }
45 
46  // Same order of elements as in the natural C array mapping
47  float* to = &energyWeights[0][0];
48  for (unsigned i = 0; i < sz; ++i)
49  to[i] = energyWeightsVec[i];
50 
51  // Create the algorithm object
52  if (isHFSimpleTimeCheck)
53  algo = std::unique_ptr<AbsHFPhase1Algo>(new HFSimpleTimeCheck(tlimits,
55  soiPhase,
56  timeShift,
63  else
64  algo = std::unique_ptr<AbsHFPhase1Algo>(new HFFlexibleTimeCheck(tlimits,
66  soiPhase,
67  timeShift,
74  }
75  }
76 
77  return algo;
78 }
79 
82 
83  std::vector<double> allPass{-10000.0, 10000.0, -10000.0, 10000.0};
84  desc.add<std::vector<double> >("tlimits", allPass);
85  desc.add<std::vector<double> >("energyWeights");
86  desc.add<unsigned>("soiPhase", 1U);
87  desc.add<double>("timeShift", 0.0);
88  desc.add<double>("triseIfNoTDC", -100.0);
89  desc.add<double>("tfallIfNoTDC", -101.0);
90  desc.add<double>("minChargeForUndershoot", 1.0e10);
91  desc.add<double>("minChargeForOvershoot", 1.0e10);
92  desc.add<bool>("alwaysCalculateQAsymmetry", true);
93 
94  desc.ifValue(edm::ParameterDescription<std::string>("Class", "HFSimpleTimeCheck", true),
95  "HFSimpleTimeCheck" >> edm::ParameterDescription<bool>("rejectAllFailures", false, true) or
96  "HFFlexibleTimeCheck" >> edm::ParameterDescription<bool>("rejectAllFailures", true, true));
97 
98  return desc;
99 }
mps_fire.i
i
Definition: mps_fire.py:428
HFAnodeStatus::N_POSSIBLE_STATES
Definition: HFAnodeStatus.h:14
HLT_FULL_cff.energyWeights
energyWeights
Definition: HLT_FULL_cff.py:8470
edm::ParameterSetDescription
Definition: ParameterSetDescription.h:52
to
HFPhase1Reconstructor_cfi.minChargeForUndershoot
minChargeForUndershoot
Definition: HFPhase1Reconstructor_cfi.py:70
HFPhase1Reconstructor_cfi.minChargeForOvershoot
minChargeForOvershoot
Definition: HFPhase1Reconstructor_cfi.py:71
cmsdt::algo
algo
Definition: constants.h:171
HLT_FULL_cff.soiPhase
soiPhase
Definition: HLT_FULL_cff.py:8471
mitigatedMETSequence_cff.U
U
Definition: mitigatedMETSequence_cff.py:36
edm::ParameterSet
Definition: ParameterSet.h:47
HLT_FULL_cff.rejectAllFailures
rejectAllFailures
Definition: HLT_FULL_cff.py:8469
HLT_FULL_cff.triseIfNoTDC
triseIfNoTDC
Definition: HLT_FULL_cff.py:8468
fillDescriptionForParseHFPhase1AlgoDescription
edm::ParameterSetDescription fillDescriptionForParseHFPhase1AlgoDescription()
Definition: parseHFPhase1AlgoDescription.cc:80
HFFlexibleTimeCheck
Definition: HFFlexibleTimeCheck.h:7
HLT_FULL_cff.tfallIfNoTDC
tfallIfNoTDC
Definition: HLT_FULL_cff.py:8467
HFFlexibleTimeCheck.h
AlCaHLTBitMon_QueryRunRegistry.string
string string
Definition: AlCaHLTBitMon_QueryRunRegistry.py:256
parseHFPhase1AlgoDescription
std::unique_ptr< AbsHFPhase1Algo > parseHFPhase1AlgoDescription(const edm::ParameterSet &ps)
Definition: parseHFPhase1AlgoDescription.cc:10
parseHFPhase1AlgoDescription.h
submitPVResolutionJobs.desc
string desc
Definition: submitPVResolutionJobs.py:251
HFSimpleTimeCheck.h
or
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e< void, edm::EventID const &, edm::Timestamp const & > We also list in braces which AR_WATCH_USING_METHOD_ is used for those or
Definition: Activities.doc:12
edm::ParameterSet::getParameter
T getParameter(std::string const &) const
Definition: ParameterSet.h:303
HFSimpleTimeCheck
Definition: HFSimpleTimeCheck.h:9
HFPhase1Reconstructor_cfi.alwaysCalculateQAsymmetry
alwaysCalculateQAsymmetry
Definition: HFPhase1Reconstructor_cfi.py:78
className
std::string className(const T &t)
Definition: ClassName.h:31
HLT_FULL_cff.timeShift
timeShift
Definition: HLT_FULL_cff.py:8472
ParameterSet.h
edm::ParameterDescription
Definition: ParameterDescription.h:110
HLT_FULL_cff.tlimits
tlimits
Definition: HLT_FULL_cff.py:8473