CMS 3D CMS Logo

Calorimetry_cff.py
Go to the documentation of this file.
1 import FWCore.ParameterSet.Config as cms
2 
3 # This is used to modify parameters for Run 2 (see bottom of file)
4 
5 #Global fast calorimetry parameters
9 #from FastSimulation.Configuration.CommonInputs_cff import *
10 
12 
13 FamosCalorimetryBlock = cms.PSet(
14  Calorimetry = cms.PSet(
15  #ECALScaleBlock, # comment out to disable scaling
16  HSParameterBlock,
17  HCALResponseBlock,
18  ECAL = cms.PSet(
19  # See FastSimulation/CaloRecHitsProducer/python/CaloRecHits_cff.py
20  Digitizer = cms.untracked.bool(False),
21  # If set to true the simulation in ECAL would be done 1X0 by 1X0
22  # this is slow but more adapted to detailed studies.
23  # Otherwise roughty 5 steps are used.
24  bFixedLength = cms.bool(False),
25 
26  # For the core 10% of the spots for
27  CoreIntervals = cms.vdouble(100.0, 0.1),
28  # change the radius of the tail of the shower
29  RTFactor = cms.double(1.0),
30  # change the radius of the core of the shower
31  RCFactor = cms.double(1.0),
32  # For the tail 10% of r<1RM. 100% otherwise
33  TailIntervals = cms.vdouble(1.0, 0.1, 100.0, 1.0),
34  FrontLeakageProbability = cms.double(1.0),
35  GridSize = cms.int32(7),
36  # change globally the Moliere radius
37 
38 
39 
41  RadiusFactorEB = cms.double(1.096),
42  RadiusFactorEE = cms.double(1.25),
43 
44 
45  RadiusPreshowerCorrections = cms.vdouble(0.137, 10.3), # default value for maxshower depth dependence-->works fine
46  MipsinGeV = cms.vdouble(0.0001421,0.0000812), # increase in mipsinGeV by 75% only in layer1
47  #SpotFraction < 0 <=> deactivated. In the case, CoreIntervals and
48  #TailIntervals are used
49  SpotFraction = cms.double(-1.0),
50  GapLossProbability = cms.double(0.9),
51  SimulatePreshower = cms.bool(True)
52  ),
53  ForwardCalorimeterProperties = cms.PSet(
54  HadronicCalorimeterProperties= cms.PSet(
55  HCAL_Sampling = cms.double(0.0035),
56  # Watch out ! The following two values are defined wrt the electron shower simulation
57  # There are not directly related to the detector properties
58  HCAL_PiOverE = cms.double(0.2),
59  # HCAL_PiOverE = cms.double(0.4)
60  HCALAeff= cms.double(55.845),
61  HCALZeff= cms.double(26),
62  HCALrho= cms.double(7.87),
63 
64  HCALradiationLengthIncm= cms.double(1.757),
65  HCALradLenIngcm2= cms.double(13.84),
66  HCALmoliereRadius= cms.double(1.719),
67  HCALcriticalEnergy= cms.double(21E-3),
68  HCALinteractionLength= cms.double(16.77),
69 
70  HCALetatow=cms.vdouble( 0.000, 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566, 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.853, 3.000, 3.139, 3.314, 3.489, 3.664, 3.839, 4.013, 4.191, 4.363, 4.538, 4.716, 4.889, 5.191),
71  # HCALDepthLam=cms.vdouble( 8.930, 9.001, 9.132, 8.912, 8.104, 8.571, 8.852, 9.230, 9.732, 10.29, 10.95, 11.68, 12.49, 12.57, 12.63, 6.449, 5.806, 8.973, 8.934, 8.823, 8.727, 8.641, 8.565, 8.496, 8.436, 8.383, 8.346, 8.307, 8.298, 8.281, 9.442, 9.437, 9.432, 9.429, 9.432, 9.433, 9.430, 9.437, 9.442, 9.446, 9.435)
72  HCALDepthLam=cms.vdouble(8.014, 8.078, 8.195, 7.998, 7.273, 7.692, 7.944, 8.283, 8.734, 9.235, 9.827, 10.482, 11.209, 11.281, 11.335, 5.788, 5.211, 8.053, 8.018, 7.918, 7.832, 7.755, 7.687, 7.625, 7.571, 7.523, 7.490, 7.455, 7.447, 7.432, 8.474, 8.469, 8.465, 8.462, 8.465, 8.466, 8.463, 8.469, 8.474, 8.477, 8.467)
73  ),
74  ),
75  CalorimeterProperties = cms.PSet(
76  # triplet for each p value: p, k_e(p), k_h(p) ...
77  RespCorrP = cms.vdouble(1.0, 1.0, 1.0, 1000.0, 1.0, 1.0),
78  PreshowerLayer2_thickness = cms.double(0.38), # layer2 thickness back to original
79  ECALEndcap_LightCollection = cms.double(0.023),
80  PreshowerLayer1_thickness = cms.double(1.65), # increase in thickness of layer 1 by 3%
81  PreshowerLayer1_mipsPerGeV = cms.double(17.85), # 50% decrease in mipsperGeV
82  PreshowerLayer2_mipsPerGeV = cms.double(59.5),
83  ECALBarrel_LightCollection = cms.double(0.03),
84  HadronicCalorimeterProperties= cms.PSet(
85  HCAL_Sampling = cms.double(0.0035),
86  # Watch out ! The following two values are defined wrt the electron shower simulation
87  # There are not directly related to the detector properties
88  HCAL_PiOverE = cms.double(0.2),
89  # HCAL_PiOverE = cms.double(0.4)
90  HCALAeff= cms.double(63.546),
91  HCALZeff= cms.double(29.),
92  HCALrho= cms.double(8.960),
93 
94  HCALradiationLengthIncm= cms.double(1.43),
95  HCALradLenIngcm2= cms.double(12.86),
96  HCALmoliereRadius= cms.double(1.712),
97  HCALcriticalEnergy= cms.double(18.63E-3),
98  HCALinteractionLength= cms.double(15.05),
99 
100  HCALetatow=cms.vdouble( 0.000, 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566, 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.853, 3.000, 3.139, 3.314, 3.489, 3.664, 3.839, 4.013, 4.191, 4.363, 4.538, 4.716, 4.889, 5.191),
101  HCALDepthLam=cms.vdouble( 8.930, 9.001, 9.132, 8.912, 8.104, 8.571, 8.852, 9.230, 9.732, 10.29, 10.95, 11.68, 12.49, 12.57, 12.63, 6.449, 5.806, 8.973, 8.934, 8.823, 8.727, 8.641, 8.565, 8.496, 8.436, 8.383, 8.346, 8.307, 8.298, 8.281, 9.442, 9.437, 9.432, 9.429, 9.432, 9.433, 9.430, 9.437, 9.442, 9.446, 9.435)
102  ),
103 
104  BarrelCalorimeterProperties = cms.PSet(
105 
106  #====== Geometrical material properties ========
107 
108  # Light Collection efficiency
109  lightColl = cms.double(0.03),
110  # Light Collection uniformity
111  lightCollUnif = cms.double(0.003),
112  # Photostatistics (photons/GeV) in the homegeneous material
113  photoStatistics = cms.double(50.E3),
114  # Thickness of the detector in cm
115  thickness = cms.double(23.0),
116 
117  #====== Global parameters of the material ========
118 
119  # Interaction length in cm
120  interactionLength = cms.double(18.5),
121  Aeff = cms.double(170.87),
122  Zeff = cms.double(68.36),
123  rho = cms.double(8.280),
124  # Radiation length in g/cm^2
125  radLenIngcm2 = cms.double(7.37),
126 
127  # ===== Those parameters might be entered by hand
128  # or calculated out of the previous ones
129 
130  # Radiation length in cm. If value set to -1, FastSim uses internally the
131  # formula radLenIngcm2/rho
132  radLenIncm = cms.double(0.89),
133  # Critical energy in GeV. If value set to -1, FastSim uses internally the
134  # formula (2.66E-3*(x0*Z/A)^1.1): 8.74E-3 for ECAL EndCap
135  criticalEnergy = cms.double(8.74E-3),
136  # Moliere Radius in cm.If value set to -1, FastSim uses internally the
137  # formula : Es/criticalEnergy*X0 with Es=sqrt(4*Pi/alphaEM)*me*c^2=0.0212 GeV
138  # This value is known to be 2.190 cm for ECAL Endcap, but the formula gives 2.159 cm
139  moliereRadius = cms.double(2.190),
140 
141  #====== Parameters for sampling ECAL ========
142 
143  # Sampling Fraction: Fs = X0eff/(da+dp) where X0eff is the average X0
144  # of the active and passive media and da/dp their thicknesses
145  Fs = cms.double(0.0),
146 
147  # e/mip for the calorimeter. May be estimated by 1./(1+0.007*(Zp-Za))
148  ehat = cms.double(0.0),
149 
150  # a rough estimate of ECAL resolution sigma/E = resE/sqrt(E)
151  # it is used to generate Nspots in radial profiles.
152  resE = cms.double(1.),
153 
154  # the width in cm of the active layer
155  da = cms.double(0.2),
156 
157  # the width in cm of the passive layer
158  dp = cms.double(0.8),
159 
160  # Is a homogenious detector?
161  bHom = cms.bool(True),
162 
163  # Activate the LogDebug
164  debug = cms.bool(False)
165 
166  ),
167 
168  EndcapCalorimeterProperties = cms.PSet(
169 
170  #====== Geometrical material properties ========
171 
172  # Light Collection efficiency
173  lightColl = cms.double(0.023),
174  # Light Collection uniformity
175  lightCollUnif = cms.double(0.003),
176  # Photostatistics (photons/GeV) in the homegeneous material
177  photoStatistics = cms.double(50.E3),
178  # Thickness of the detector in cm
179  thickness = cms.double(22.0),
180 
181  #====== Global parameters of the material ========
182 
183  # Interaction length in cm
184  interactionLength = cms.double(18.5),
185  Aeff = cms.double(170.87),
186  Zeff = cms.double(68.36),
187  rho = cms.double(8.280),
188  # Radiation length in g/cm^2
189  radLenIngcm2 = cms.double(7.37),
190 
191  # ===== Those parameters might be entered by hand
192  # or calculated out of the previous ones
193 
194  # Radiation length in cm. If value set to -1, FastSim uses internally the
195  # formula radLenIngcm2/rho
196  radLenIncm = cms.double(0.89),
197  # Critical energy in GeV. If value set to -1, FastSim uses internally the
198  # formula (2.66E-3*(x0*Z/A)^1.1): 8.74E-3 for ECAL EndCap
199  criticalEnergy = cms.double(8.74E-3),
200  # Moliere Radius in cm.If value set to -1, FastSim uses internally the
201  # formula : Es/criticalEnergy*X0 with Es=sqrt(4*Pi/alphaEM)*me*c^2=0.0212 GeV
202  # This value is known to be 2.190 cm for ECAL Endcap, but the formula gives 2.159 cm
203  moliereRadius = cms.double(2.190),
204 
205 
206  #====== Parameters for sampling ECAL ========
207 
208  # Sampling Fraction: Fs = X0eff/(da+dp) where X0eff is the average X0
209  # of the active and passive media and da/dp their thicknesses
210  Fs = cms.double(0.0),
211 
212  # e/mip for the calorimeter. May be estimated by 1./(1+0.007*(Zp-Za))
213  ehat = cms.double(0.0),
214 
215  # a rough estimate of ECAL resolution sigma/E = resE/sqrt(E)
216  # it is used to generate Nspots in radial profiles.
217  resE = cms.double(1.),
218 
219  # the width in cm of the active layer
220  da = cms.double(0.2),
221 
222  # the width in cm of the passive layer
223  dp = cms.double(0.8),
224 
225  # Is a homogenious detector?
226  bHom = cms.bool(True),
227 
228  # Activate the LogDebug
229  debug = cms.bool(False)
230 
231  )
232 
233  ),
234  Debug = cms.untracked.bool(False),
235  useDQM = cms.untracked.bool(False),
236  # EvtsToDebug = cms.untracked.vuint32(487),
237  HCAL = cms.PSet(
238  SimMethod = cms.int32(0),
239  GridSize = cms.int32(7),
240  #-- 0 - simple response, 1 - parametrized response + showering, 2 - tabulated response + showering
241  SimOption = cms.int32(2),
242  Digitizer = cms.untracked.bool(False),
243 
244  samplingHBHE = cms.vdouble(125.44, 125.54, 125.32, 125.13, 124.46,
245  125.01, 125.22, 125.48, 124.45, 125.90,
246  125.83, 127.01, 126.82, 129.73, 131.83,
247  143.52, # HB
248  210.55, 197.93, 186.12, 189.64, 189.63,
249  190.28, 189.61, 189.60, 190.12, 191.22,
250  190.90, 193.06, 188.42, 188.42), #HE
251  samplingHF = cms.vdouble(0.383, 0.368),
252  samplingHO = cms.vdouble(231.0, 231.0, 231.0, 231.0, 360.0,
253  360.0, 360.0, 360.0, 360.0, 360.0,
254  360.0, 360.0, 360.0, 360.0, 360.0),
255 
256  ietaShiftHB = cms.int32(1),
257  timeShiftHB = cms.vdouble(6.9, 6.9, 7.1, 7.1, 7.3, 7.5, 7.9, 8.3, 8.7, 9.1, 9.5, 10.3, 10.9, 11.5, 12.3, 14.1),
258  ietaShiftHE = cms.int32(16),
259  timeShiftHE = cms.vdouble(16.9, 15.7, 15.3, 15.3, 15.1, 14.9, 14.7, 14.7, 14.5, 14.5, 14.3, 14.3, 14.5, 13.9),
260  ietaShiftHO = cms.int32(1),
261  timeShiftHO = cms.vdouble(13.7, 13.7, 13.9, 14.1, 15.1, 15.7, 16.5, 17.3, 18.1, 19.1, 20.3, 21.9, 23.3, 25.5, 26.1),
262  ietaShiftHF = cms.int32(29),
263  timeShiftHF = cms.vdouble(50.7, 52.5, 52.9, 53.9, 54.5, 55.1, 55.1, 55.7, 55.9, 56.1, 56.1, 56.1, 56.5),
264  ),
265  HFShower = cms.PSet(
266  HFShowerBlock = cms.PSet(refToPSet_ = cms.string("HFShowerBlock"))
267  ),
268  HFShowerLibrary = cms.PSet(
269  useShowerLibrary = cms.untracked.bool(True),
270  useCorrectionSL = cms.untracked.bool(True),
271  ApplyFiducialCut = cms.bool(True),
272  HFLibraryFileBlock = cms.PSet(refToPSet_ = cms.string("HFLibraryFileBlock"))
273  )
274  ),
275  GFlash = cms.PSet(
276  GflashExportToFastSim = cms.bool(True),
277  GflashHadronPhysics = cms.string('QGSP_BERT'),
278  GflashEMShowerModel = cms.bool(False),
279  GflashHadronShowerModel = cms.bool(True),
280  GflashHcalOuter = cms.bool(False),
281  GflashHistogram = cms.bool(False),
282  GflashHistogramName = cms.string('gflash_histogram.root'),
283  Verbosity = cms.untracked.int32(0),
284  bField = cms.double(3.8),
285  watcherOn = cms.bool(False),
286  tuning_pList = cms.vdouble()
287  )
288  )
289 
290 FamosCalorimetryBlock.Calorimetry.ECAL.Digitizer = True
291 FamosCalorimetryBlock.Calorimetry.HCAL.Digitizer = True
292 
293 from Configuration.Eras.Modifier_run2_common_cff import run2_common
ECALResponse_cfi
HFParameters_cff
HSParameters_cfi
HcalResponse_cfi