CMS 3D CMS Logo

List of all members | Public Member Functions | Private Attributes
CMSEmStandardPhysicsLPM Class Reference

#include <CMSEmStandardPhysicsLPM.h>

Inheritance diagram for CMSEmStandardPhysicsLPM:

Public Member Functions

 CMSEmStandardPhysicsLPM (G4int ver)
 
void ConstructParticle () override
 
void ConstructProcess () override
 
 ~CMSEmStandardPhysicsLPM () override
 

Private Attributes

G4int verbose
 

Detailed Description

Definition at line 7 of file CMSEmStandardPhysicsLPM.h.

Constructor & Destructor Documentation

◆ CMSEmStandardPhysicsLPM()

CMSEmStandardPhysicsLPM::CMSEmStandardPhysicsLPM ( G4int  ver)

Definition at line 81 of file CMSEmStandardPhysicsLPM.cc.

81  : G4VPhysicsConstructor("CMSEmStandard_emm"), verbose(ver) {
82  G4EmParameters* param = G4EmParameters::Instance();
83  param->SetDefaults();
84  param->SetVerbose(verbose);
85  param->SetApplyCuts(true);
86  param->SetStepFunction(0.8, 1 * CLHEP::mm);
87  param->SetMscRangeFactor(0.2);
88  param->SetMscStepLimitType(fMinimal);
89  SetPhysicsType(bElectromagnetic);
90 }

References verbose.

◆ ~CMSEmStandardPhysicsLPM()

CMSEmStandardPhysicsLPM::~CMSEmStandardPhysicsLPM ( )
override

Definition at line 92 of file CMSEmStandardPhysicsLPM.cc.

92 {}

Member Function Documentation

◆ ConstructParticle()

void CMSEmStandardPhysicsLPM::ConstructParticle ( )
override

Definition at line 94 of file CMSEmStandardPhysicsLPM.cc.

94  {
95  // gamma
96  G4Gamma::Gamma();
97 
98  // leptons
100  G4Positron::Positron();
101  G4MuonPlus::MuonPlus();
102  G4MuonMinus::MuonMinus();
103  G4TauMinus::TauMinusDefinition();
104  G4TauPlus::TauPlusDefinition();
105 
106  // mesons
107  G4PionPlus::PionPlusDefinition();
108  G4PionMinus::PionMinusDefinition();
109  G4KaonPlus::KaonPlusDefinition();
110  G4KaonMinus::KaonMinusDefinition();
111  G4DMesonMinus::DMesonMinusDefinition();
112  G4DMesonPlus::DMesonPlusDefinition();
113  G4BMesonMinus::BMesonMinusDefinition();
114  G4BMesonPlus::BMesonPlusDefinition();
115 
116  // barions
117  G4Proton::Proton();
118  G4AntiProton::AntiProton();
119  G4SigmaMinus::SigmaMinusDefinition();
120  G4AntiSigmaMinus::AntiSigmaMinusDefinition();
121  G4SigmaPlus::SigmaPlusDefinition();
122  G4AntiSigmaPlus::AntiSigmaPlusDefinition();
123  G4XiMinus::XiMinusDefinition();
124  G4AntiXiMinus::AntiXiMinusDefinition();
125  G4OmegaMinus::OmegaMinusDefinition();
126  G4AntiOmegaMinus::AntiOmegaMinusDefinition();
127  G4LambdacPlus::LambdacPlusDefinition();
128  G4AntiLambdacPlus::AntiLambdacPlusDefinition();
129  G4XicPlus::XicPlusDefinition();
130  G4AntiXicPlus::AntiXicPlusDefinition();
131 
132  // ions
133  G4Deuteron::Deuteron();
134  G4Triton::Triton();
135  G4He3::He3();
136  G4Alpha::Alpha();
137  G4GenericIon::GenericIonDefinition();
138 }

References VtxSmearedParameters_cfi::Alpha, and nanoDQM_cff::Electron.

◆ ConstructProcess()

void CMSEmStandardPhysicsLPM::ConstructProcess ( )
override

Definition at line 140 of file CMSEmStandardPhysicsLPM.cc.

140  {
141  if (verbose > 1) {
142  edm::LogVerbatim("PhysicsList") << "### " << GetPhysicsName() << " Construct Processes";
143  }
144 
145  // This EM builder takes default models of Geant4 10 EMV.
146  // Multiple scattering by Urban for all particles
147  // except e+e- below 100 MeV for which the Urban model is used
148 
149  G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
150  G4LossTableManager* man = G4LossTableManager::Instance();
151 
152  // muon & hadron bremsstrahlung and pair production
153  G4MuBremsstrahlung* mub = nullptr;
154  G4MuPairProduction* mup = nullptr;
155  G4hBremsstrahlung* pib = nullptr;
156  G4hPairProduction* pip = nullptr;
157  G4hBremsstrahlung* kb = nullptr;
158  G4hPairProduction* kp = nullptr;
159  G4hBremsstrahlung* pb = nullptr;
160  G4hPairProduction* pp = nullptr;
161 
162  // muon & hadron multiple scattering
163  G4MuMultipleScattering* mumsc = nullptr;
164  G4hMultipleScattering* pimsc = nullptr;
165  G4hMultipleScattering* kmsc = nullptr;
166  G4hMultipleScattering* pmsc = nullptr;
167  G4hMultipleScattering* hmsc = nullptr;
168 
169  // muon and hadron single scattering
170  G4CoulombScattering* muss = nullptr;
171  G4CoulombScattering* piss = nullptr;
172  G4CoulombScattering* kss = nullptr;
173 
174  // high energy limit for e+- scattering models and bremsstrahlung
175  G4double highEnergyLimit = 100 * MeV;
176 
177  G4Region* aRegion = G4RegionStore::GetInstance()->GetRegion("HcalRegion", false);
178  G4Region* bRegion = G4RegionStore::GetInstance()->GetRegion("HGCalRegion", false);
179  if (verbose > 1) {
180  edm::LogVerbatim("PhysicsList") << "CMSEmStandardPhysicsLPM: HcalRegion " << aRegion << "; HGCalRegion " << bRegion;
181  }
182  G4ParticleTable* table = G4ParticleTable::GetParticleTable();
183  EmParticleList emList;
184  for (const auto& particleName : emList.PartNames()) {
185  G4ParticleDefinition* particle = table->FindParticle(particleName);
186 
187  if (particleName == "gamma") {
188  G4PhotoElectricEffect* pee = new G4PhotoElectricEffect();
189 
190  if (G4EmParameters::Instance()->GeneralProcessActive()) {
191  G4GammaGeneralProcess* sp = new G4GammaGeneralProcess();
192  sp->AddEmProcess(pee);
193  sp->AddEmProcess(new G4ComptonScattering());
194  sp->AddEmProcess(new G4GammaConversion());
195  man->SetGammaGeneralProcess(sp);
196  ph->RegisterProcess(sp, particle);
197 
198  } else {
199  ph->RegisterProcess(pee, particle);
200  ph->RegisterProcess(new G4ComptonScattering(), particle);
201  ph->RegisterProcess(new G4GammaConversion(), particle);
202  }
203 
204  } else if (particleName == "e-") {
205  G4eIonisation* eioni = new G4eIonisation();
206 
207  G4eMultipleScattering* msc = new G4eMultipleScattering;
208  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
209  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
210  G4UrbanMscModel* msc3 = new G4UrbanMscModel();
211  msc1->SetHighEnergyLimit(highEnergyLimit);
212  msc2->SetLowEnergyLimit(highEnergyLimit);
213  msc3->SetHighEnergyLimit(highEnergyLimit);
214  msc3->SetLocked(true);
215  msc->SetEmModel(msc1);
216  msc->SetEmModel(msc2);
217  if (aRegion) {
218  msc->AddEmModel(-1, msc3, aRegion);
219  }
220  if (bRegion) {
221  msc->AddEmModel(-1, msc3, bRegion);
222  }
223 
224  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
225  G4CoulombScattering* ss = new G4CoulombScattering();
226  ss->SetEmModel(ssm);
227  ss->SetMinKinEnergy(highEnergyLimit);
228  ssm->SetLowEnergyLimit(highEnergyLimit);
229  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
230 
231  ph->RegisterProcess(msc, particle);
232  ph->RegisterProcess(eioni, particle);
233  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
234  ph->RegisterProcess(ss, particle);
235 
236  } else if (particleName == "e+") {
237  G4eIonisation* eioni = new G4eIonisation();
238 
239  G4eMultipleScattering* msc = new G4eMultipleScattering;
240  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
241  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
242  G4UrbanMscModel* msc3 = new G4UrbanMscModel();
243  msc1->SetHighEnergyLimit(highEnergyLimit);
244  msc2->SetLowEnergyLimit(highEnergyLimit);
245  msc3->SetHighEnergyLimit(highEnergyLimit);
246  msc3->SetLocked(true);
247  msc->SetEmModel(msc1);
248  msc->SetEmModel(msc2);
249  if (aRegion) {
250  msc->AddEmModel(-1, msc3, aRegion);
251  }
252  if (bRegion) {
253  msc->AddEmModel(-1, msc3, bRegion);
254  }
255 
256  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
257  G4CoulombScattering* ss = new G4CoulombScattering();
258  ss->SetEmModel(ssm);
259  ss->SetMinKinEnergy(highEnergyLimit);
260  ssm->SetLowEnergyLimit(highEnergyLimit);
261  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
262 
263  ph->RegisterProcess(msc, particle);
264  ph->RegisterProcess(eioni, particle);
265  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
266  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
267  ph->RegisterProcess(ss, particle);
268 
269  } else if (particleName == "mu+" || particleName == "mu-") {
270  if (nullptr == mub) {
271  mub = new G4MuBremsstrahlung();
272  mup = new G4MuPairProduction();
273  mumsc = new G4MuMultipleScattering();
274  mumsc->SetEmModel(new G4WentzelVIModel());
275  muss = new G4CoulombScattering();
276  }
277  ph->RegisterProcess(mumsc, particle);
278  ph->RegisterProcess(new G4MuIonisation(), particle);
279  ph->RegisterProcess(mub, particle);
280  ph->RegisterProcess(mup, particle);
281  ph->RegisterProcess(muss, particle);
282 
283  } else if (particleName == "alpha" || particleName == "He3") {
284  ph->RegisterProcess(new G4hMultipleScattering(), particle);
285  ph->RegisterProcess(new G4ionIonisation(), particle);
286 
287  } else if (particleName == "GenericIon") {
288  if (nullptr == hmsc) {
289  hmsc = new G4hMultipleScattering("ionmsc");
290  }
291  ph->RegisterProcess(hmsc, particle);
292  ph->RegisterProcess(new G4ionIonisation(), particle);
293 
294  } else if (particleName == "pi+" || particleName == "pi-") {
295  if (nullptr == pib) {
296  pib = new G4hBremsstrahlung();
297  pip = new G4hPairProduction();
298  pimsc = new G4hMultipleScattering();
299  pimsc->SetEmModel(new G4WentzelVIModel());
300  piss = new G4CoulombScattering();
301  }
302  ph->RegisterProcess(pimsc, particle);
303  ph->RegisterProcess(new G4hIonisation(), particle);
304  ph->RegisterProcess(pib, particle);
305  ph->RegisterProcess(pip, particle);
306  ph->RegisterProcess(piss, particle);
307 
308  } else if (particleName == "kaon+" || particleName == "kaon-") {
309  if (nullptr == kb) {
310  kb = new G4hBremsstrahlung();
311  kp = new G4hPairProduction();
312  kmsc = new G4hMultipleScattering();
313  kmsc->SetEmModel(new G4WentzelVIModel());
314  kss = new G4CoulombScattering();
315  }
316  ph->RegisterProcess(kmsc, particle);
317  ph->RegisterProcess(new G4hIonisation(), particle);
318  ph->RegisterProcess(kb, particle);
319  ph->RegisterProcess(kp, particle);
320  ph->RegisterProcess(kss, particle);
321 
322  } else if (particleName == "proton" || particleName == "anti_proton") {
323  if (nullptr == pb) {
324  pb = new G4hBremsstrahlung();
325  pp = new G4hPairProduction();
326  }
327  pmsc = new G4hMultipleScattering();
328  pmsc->SetEmModel(new G4WentzelVIModel());
329 
330  ph->RegisterProcess(pmsc, particle);
331  ph->RegisterProcess(new G4hIonisation(), particle);
332  ph->RegisterProcess(pb, particle);
333  ph->RegisterProcess(pp, particle);
334  ph->RegisterProcess(new G4CoulombScattering(), particle);
335 
336  } else if (particle->GetPDGCharge() != 0.0) {
337  if (nullptr == hmsc) {
338  hmsc = new G4hMultipleScattering("ionmsc");
339  }
340  ph->RegisterProcess(hmsc, particle);
341  ph->RegisterProcess(new G4hIonisation(), particle);
342  }
343  }
344  edm::LogVerbatim("PhysicsList") << "CMSEmStandardPhysicsLPM: EM physics is instantiated";
345 }

References kp, MeV, HiggsValidation_cfi::particleName, EmParticleList::PartNames(), createTree::pp, contentValuesCheck::ss, TableParser::table, and verbose.

Member Data Documentation

◆ verbose

G4int CMSEmStandardPhysicsLPM::verbose
private

Definition at line 16 of file CMSEmStandardPhysicsLPM.h.

Referenced by CMSEmStandardPhysicsLPM(), and ConstructProcess().

VtxSmearedParameters_cfi.Alpha
Alpha
Definition: VtxSmearedParameters_cfi.py:115
CMSEmStandardPhysicsLPM::verbose
G4int verbose
Definition: CMSEmStandardPhysicsLPM.h:16
MeV
const double MeV
contentValuesCheck.ss
ss
Definition: contentValuesCheck.py:33
HiggsValidation_cfi.particleName
particleName
Definition: HiggsValidation_cfi.py:7
nanoDQM_cff.Electron
Electron
Definition: nanoDQM_cff.py:62
EmParticleList
Definition: EmParticleList.h:10
edm::LogVerbatim
Log< level::Info, true > LogVerbatim
Definition: MessageLogger.h:128
EmParticleList::PartNames
const std::vector< G4String > & PartNames() const
Definition: EmParticleList.cc:52
createTree.pp
pp
Definition: createTree.py:17
TableParser.table
table
Definition: TableParser.py:111
kp
int kp
Definition: CascadeWrapper.h:13