10 import matplotlib.pyplot
as plt
12 from mpl_toolkits.mplot3d
import Axes3D
14 parser = argparse.ArgumentParser()
15 parser.add_argument(
"-PU",
"--filePU",help=
"input PU file",default=
"2021PU.root")
16 parser.add_argument(
"-NPU",
"--fileNPU",help=
"input no PU file",default=
"2021noPU.root")
17 parser.add_argument(
"-O",
"--opfilename",help=
"ouput file name",default=
"isotk_relval")
19 fName1 = parser.parse_args().filePU
20 fName2 = parser.parse_args().fileNPU
21 foutput = parser.parse_args().opfilename
24 tree1 = uproot.open(fName1,xrootdsource=dict(chunkbytes=1024**3, limitbytes=1024**3))[
'HcalIsoTrkAnalyzer/CalibTree']
27 tree2 = uproot.open(fName2,xrootdsource=dict(chunkbytes=1024**3, limitbytes=1024**3))[
'HcalIsoTrkAnalyzer/CalibTree']
30 print (
"loaded files")
31 branchespu = [
't_Run',
't_Event',
't_nVtx',
't_ieta',
't_iphi',
't_p',
't_pt',
't_gentrackP',
't_eMipDR',
't_eHcal',
't_eHcal10',
't_eHcal30',
't_hmaxNearP',
't_emaxNearP',
't_hAnnular',
't_eAnnular',
't_rhoh',
't_selectTk',
't_qltyFlag']
32 branchesnpu = [
't_Event',
't_ieta',
't_iphi',
't_p',
't_eHcal',
't_eHcal10',
't_eHcal30']
34 dictpu = tree1.arrays(branches=branchespu)
35 dictnpu = tree2.arrays(branches=branchesnpu)
36 dfspu = pd.DataFrame.from_dict(dictpu)
37 dfspu.columns=branchespu
38 dfsnpu = pd.DataFrame.from_dict(dictnpu)
39 dfsnpu.columns=branchesnpu
40 print (
"loaded dicts and dfs")
41 print (
"PU sample size:",dfspu.shape[0])
42 print (
"noPU sample size:",dfsnpu.shape[0])
44 merged = pd.merge(dfspu, dfsnpu , on=[
't_Event',
't_ieta',
't_iphi'])
45 print (
"selected common events before cut:",merged.shape[0])
47 keepvars = [
't_nVtx',
't_ieta',
't_eHcal10_x',
't_eHcal30_x',
't_delta_x',
't_eHcal10_y',
't_eHcal30_y',
't_delta_y',
't_hmaxNearP',
't_emaxNearP',
't_hAnnular',
't_eAnnular',
't_rhoh',
't_pt',
't_eHcal_x',
't_eHcal_y',
't_p_x',
't_p_y',
't_eMipDR']
50 #########################all ietas
51 cuts1 = (merged['t_selectTk'])&(merged['t_qltyFlag'])&(merged['t_hmaxNearP']<20)&(merged['t_eMipDR']<1)&(abs(merged['t_p'] - 50)<10)&(merged['t_eHcal_x']>10)
52 merged1=merged.loc[cuts1]
53 merged1 = merged1.reset_index(drop=True)
54 print ("selected events after cut for all ietas:",merged1.shape[0])
55 merged1['t_delta']=merged1['t_eHcal30']-merged1['t_eHcal10']
56 final_df_all = merged1[keepvars]
57 #final_dfnp = final_df.values
58 #np.save('isotk_relval_all.npy',final_df_all.values)
59 #np.save('isotk_relval_all.npy',final_df_all)
60 final_df_all.to_pickle(foutput+"_all.pkl")
61 final_df_all.to_csv(foutput+"_all.txt")
62 #########################split ieta < 16
64 cuts2 = (merged['t_selectTk'])&(merged['t_qltyFlag'])&(merged['t_hmaxNearP']<20)&(merged['t_eMipDR']<1)&(abs(merged['t_ieta'])<16)&(abs(merged['t_p'] - 50)<10)&(merged['t_eHcal_x']>10)
65 merged2=merged.loc[cuts2]
66 merged2 = merged2.reset_index(drop=True)
67 print ("selected events after cut for ieta < 16:",merged2.shape[0])
68 merged2['t_delta']=merged2['t_eHcal30']-merged2['t_eHcal10']
69 final_df_low = merged2[keepvars]
70 #final_dfnp = final_df.values
71 #np.save('isotk_relval_lo.npy',final_df_low.values)
72 #np.save('isotk_relval_lo.npy',final_df_low)
73 final_df_low.to_pickle(foutput+"_lo.pkl")
74 final_df_low.to_csv(foutput+"_lo.txt")
79 cuts3 = (merged[
't_selectTk'])&(merged[
't_qltyFlag'])&(merged[
't_hmaxNearP']<20)&(merged[
't_eMipDR']<1)&(
abs(merged[
't_p_x'] - 50)<10)&(merged[
't_eHcal_x']>10)
80 merged3=merged.loc[cuts3]
81 merged3 = merged3.reset_index(drop=
True)
82 print (
"selected events after cut for ieta > 24:",merged3.shape[0])
83 merged3[
't_delta_x']=merged3[
't_eHcal30_x']-merged3[
't_eHcal10_x']
84 merged3[
't_delta_y']=merged3[
't_eHcal30_y']-merged3[
't_eHcal10_y']
86 final_df_hi = merged3[keepvars]
87 final_df_hi.to_pickle(foutput+
"_hi.pkl")
88 final_df_hi.to_csv(foutput+
"_hi.txt")
91 threedee = plt.figure().gca(projection='3d')
92 threedee.scatter(final_df_hi['t_eHcal_x'], final_df_hi['t_eHcal_y'], final_df_hi['t_delta'])
93 threedee.set_xlabel('Corrected Energy')
94 threedee.set_ylabel('Uncorrected Energy')
95 threedee.set_zlabel('delta')
96 fig = threedee.get_figure()
98 fig.savefig('debu.png')
100 print(type(merged3['t_p']))
101 print(merged3['t_p'])
102 print(merged3['t_p'].to_numpy())
104 a=merged3['t_p'].to_numpy()
110 print(merged3[
't_ieta'].dtype)
112 with uproot.recreate(foutput+
".root")
as f:
114 f[
"tree"] = uproot.newtree({
"t_Event": np.int32,
115 "t_p_PU": np.float64,
116 "t_eHcal_PU":np.float64,
117 "t_delta_PU":np.float64,
118 "t_p_NoPU": np.float64,
119 "t_eHcal_noPU":np.float64,
120 "t_delta_NoPU":np.float64,
124 f[
"tree"].extend({
"t_Event": merged3[
't_Event'],
125 "t_p_PU": merged3[
't_p_x'].to_numpy(),
126 "t_eHcal_PU": merged3[
't_eHcal_x'].to_numpy(),
127 "t_delta_PU": merged3[
't_delta_x'].to_numpy(),
128 "t_p_NoPU": merged3[
't_p_y'].to_numpy(),
129 "t_eHcal_noPU": merged3[
't_eHcal_y'].to_numpy(),
130 "t_delta_NoPU": merged3[
't_delta_y'].to_numpy(),
131 "t_ieta": merged3[
't_ieta'].to_numpy()})