CMS 3D CMS Logo

List of all members | Public Member Functions | Private Attributes
CMSEmStandardPhysicsXS Class Reference

#include <CMSEmStandardPhysicsXS.h>

Inheritance diagram for CMSEmStandardPhysicsXS:

Public Member Functions

 CMSEmStandardPhysicsXS (G4int ver)
 
void ConstructParticle () override
 
void ConstructProcess () override
 
 ~CMSEmStandardPhysicsXS () override
 

Private Attributes

G4int verbose
 

Detailed Description

Definition at line 7 of file CMSEmStandardPhysicsXS.h.

Constructor & Destructor Documentation

◆ CMSEmStandardPhysicsXS()

CMSEmStandardPhysicsXS::CMSEmStandardPhysicsXS ( G4int  ver)

Definition at line 95 of file CMSEmStandardPhysicsXS.cc.

95  : G4VPhysicsConstructor("CMSEmStandard_emn"), verbose(ver) {
96  G4EmParameters* param = G4EmParameters::Instance();
97  param->SetDefaults();
98  param->SetVerbose(verbose);
99  param->SetApplyCuts(true);
100  param->SetLowestElectronEnergy(100 * eV);
101  param->SetStepFunction(0.8, 1 * CLHEP::mm);
102  param->SetUseMottCorrection(true); // use Mott-correction for e-/e+ msc gs
103  param->SetMscRangeFactor(0.2);
104  param->SetMscStepLimitType(fMinimal);
105  param->SetFluo(true);
106  SetPhysicsType(bElectromagnetic);
107 }

References verbose.

◆ ~CMSEmStandardPhysicsXS()

CMSEmStandardPhysicsXS::~CMSEmStandardPhysicsXS ( )
override

Definition at line 109 of file CMSEmStandardPhysicsXS.cc.

109 {}

Member Function Documentation

◆ ConstructParticle()

void CMSEmStandardPhysicsXS::ConstructParticle ( )
override

Definition at line 111 of file CMSEmStandardPhysicsXS.cc.

111  {
112  // gamma
113  G4Gamma::Gamma();
114 
115  // leptons
117  G4Positron::Positron();
118  G4MuonPlus::MuonPlus();
119  G4MuonMinus::MuonMinus();
120  G4TauMinus::TauMinusDefinition();
121  G4TauPlus::TauPlusDefinition();
122 
123  // mesons
124  G4PionPlus::PionPlusDefinition();
125  G4PionMinus::PionMinusDefinition();
126  G4KaonPlus::KaonPlusDefinition();
127  G4KaonMinus::KaonMinusDefinition();
128  G4DMesonMinus::DMesonMinusDefinition();
129  G4DMesonPlus::DMesonPlusDefinition();
130  G4BMesonMinus::BMesonMinusDefinition();
131  G4BMesonPlus::BMesonPlusDefinition();
132 
133  // barions
134  G4Proton::Proton();
135  G4AntiProton::AntiProton();
136  G4SigmaMinus::SigmaMinusDefinition();
137  G4AntiSigmaMinus::AntiSigmaMinusDefinition();
138  G4SigmaPlus::SigmaPlusDefinition();
139  G4AntiSigmaPlus::AntiSigmaPlusDefinition();
140  G4XiMinus::XiMinusDefinition();
141  G4AntiXiMinus::AntiXiMinusDefinition();
142  G4OmegaMinus::OmegaMinusDefinition();
143  G4AntiOmegaMinus::AntiOmegaMinusDefinition();
144  G4LambdacPlus::LambdacPlusDefinition();
145  G4AntiLambdacPlus::AntiLambdacPlusDefinition();
146  G4XicPlus::XicPlusDefinition();
147  G4AntiXicPlus::AntiXicPlusDefinition();
148 
149  // ions
150  G4Deuteron::Deuteron();
151  G4Triton::Triton();
152  G4He3::He3();
153  G4Alpha::Alpha();
154  G4GenericIon::GenericIonDefinition();
155 }

References VtxSmearedParameters_cfi::Alpha, and nanoDQM_cff::Electron.

◆ ConstructProcess()

void CMSEmStandardPhysicsXS::ConstructProcess ( )
override

Definition at line 157 of file CMSEmStandardPhysicsXS.cc.

157  {
158  if (verbose > 0) {
159  edm::LogVerbatim("PhysicsList") << "### " << GetPhysicsName() << " Construct Processes";
160  }
161 
162  // This EM builder takes default models of Geant4 10 EMV.
163  // Multiple scattering by Urban for all particles
164  // except e+e- below 100 MeV for which the Urban model is used
165 
166  G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
167 
168  // muon & hadron bremsstrahlung and pair production
169  G4MuBremsstrahlung* mub = nullptr;
170  G4MuPairProduction* mup = nullptr;
171  G4hBremsstrahlung* pib = nullptr;
172  G4hPairProduction* pip = nullptr;
173  G4hBremsstrahlung* kb = nullptr;
174  G4hPairProduction* kp = nullptr;
175  G4hBremsstrahlung* pb = nullptr;
176  G4hPairProduction* pp = nullptr;
177  G4ePairProduction* ee = nullptr;
178 
179  // muon & hadron multiple scattering
180  G4MuMultipleScattering* mumsc = nullptr;
181  G4hMultipleScattering* pimsc = nullptr;
182  G4hMultipleScattering* kmsc = nullptr;
183  G4hMultipleScattering* hmsc = nullptr;
184 
185  // muon and hadron single scattering
186  G4CoulombScattering* muss = nullptr;
187  G4CoulombScattering* piss = nullptr;
188  G4CoulombScattering* kss = nullptr;
189 
190  // high energy limit for e+- scattering models and bremsstrahlung
191  G4double highEnergyLimit = 100 * MeV;
192 
193  // nuclear stopping
194  G4NuclearStopping* pnuc = nullptr;
195 
196  G4Region* aRegion = G4RegionStore::GetInstance()->GetRegion("HcalRegion", false);
197  G4Region* bRegion = G4RegionStore::GetInstance()->GetRegion("HGCalRegion", false);
198  if (verbose > 1) {
199  edm::LogVerbatim("PhysicsList") << "CMSEmStandardPhysicsLPM: HcalRegion " << aRegion << "; HGCalRegion " << bRegion;
200  }
201 
202  G4ParticleTable* table = G4ParticleTable::GetParticleTable();
203  EmParticleList emList;
204  for (const auto& particleName : emList.PartNames()) {
205  G4ParticleDefinition* particle = table->FindParticle(particleName);
206 
207  if (particleName == "gamma") {
208  G4PhotoElectricEffect* photo = new G4PhotoElectricEffect();
209  photo->SetEmModel(new G4LivermorePhotoElectricModel());
210  ph->RegisterProcess(photo, particle);
211  G4ComptonScattering* compt = new G4ComptonScattering();
212  compt->SetEmModel(new G4KleinNishinaModel());
213  ph->RegisterProcess(compt, particle);
214  ph->RegisterProcess(new G4GammaConversion(), particle);
215 
216  } else if (particleName == "e-") {
217  G4eIonisation* eioni = new G4eIonisation();
218 
219  G4eMultipleScattering* msc = new G4eMultipleScattering;
220  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
221  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
222  G4GoudsmitSaundersonMscModel* msc3 = new G4GoudsmitSaundersonMscModel();
223  msc3->SetStepLimitType(fUseSafetyPlus);
224  msc3->SetRangeFactor(0.08);
225  msc3->SetSkin(3.0);
226  msc1->SetHighEnergyLimit(highEnergyLimit);
227  msc2->SetLowEnergyLimit(highEnergyLimit);
228  msc3->SetHighEnergyLimit(highEnergyLimit);
229  msc3->SetLocked(true);
230  msc->SetEmModel(msc1);
231  msc->SetEmModel(msc2);
232  if (aRegion)
233  msc->AddEmModel(-1, msc3, aRegion);
234  if (bRegion)
235  msc->AddEmModel(-1, msc3, bRegion);
236 
237  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
238  G4CoulombScattering* ss = new G4CoulombScattering();
239  ss->SetEmModel(ssm);
240  ss->SetMinKinEnergy(highEnergyLimit);
241  ssm->SetLowEnergyLimit(highEnergyLimit);
242  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
243 
244  // bremsstrahlung
245  G4eBremsstrahlung* brem = new G4eBremsstrahlung();
246  G4SeltzerBergerModel* br1 = new G4SeltzerBergerModel();
247  G4eBremsstrahlungRelModel* br2 = new G4eBremsstrahlungRelModel();
248  br1->SetAngularDistribution(new G4Generator2BS());
249  br2->SetAngularDistribution(new G4Generator2BS());
250  brem->SetEmModel(br1);
251  brem->SetEmModel(br2);
252  br1->SetHighEnergyLimit(GeV);
253 
254  if (!ee) {
255  ee = new G4ePairProduction();
256  }
257 
258  ph->RegisterProcess(msc, particle);
259  ph->RegisterProcess(eioni, particle);
260  ph->RegisterProcess(brem, particle);
261  ph->RegisterProcess(ee, particle);
262  ph->RegisterProcess(ss, particle);
263 
264  } else if (particleName == "e+") {
265  G4eIonisation* eioni = new G4eIonisation();
266 
267  G4eMultipleScattering* msc = new G4eMultipleScattering;
268  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
269  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
270  G4GoudsmitSaundersonMscModel* msc3 = new G4GoudsmitSaundersonMscModel();
271  msc3->SetStepLimitType(fUseSafetyPlus);
272  msc3->SetRangeFactor(0.08);
273  msc3->SetSkin(3.0);
274  msc1->SetHighEnergyLimit(highEnergyLimit);
275  msc2->SetLowEnergyLimit(highEnergyLimit);
276  msc3->SetHighEnergyLimit(highEnergyLimit);
277  msc3->SetLocked(true);
278  msc->SetEmModel(msc1);
279  msc->SetEmModel(msc2);
280  if (aRegion)
281  msc->AddEmModel(-1, msc3, aRegion);
282  if (bRegion)
283  msc->AddEmModel(-1, msc3, bRegion);
284 
285  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
286  G4CoulombScattering* ss = new G4CoulombScattering();
287  ss->SetEmModel(ssm);
288  ss->SetMinKinEnergy(highEnergyLimit);
289  ssm->SetLowEnergyLimit(highEnergyLimit);
290  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
291 
292  // bremsstrahlung
293  G4eBremsstrahlung* brem = new G4eBremsstrahlung();
294  G4SeltzerBergerModel* br1 = new G4SeltzerBergerModel();
295  G4eBremsstrahlungRelModel* br2 = new G4eBremsstrahlungRelModel();
296  br1->SetAngularDistribution(new G4Generator2BS());
297  br2->SetAngularDistribution(new G4Generator2BS());
298  brem->SetEmModel(br1);
299  brem->SetEmModel(br2);
300  br1->SetHighEnergyLimit(GeV);
301 
302  if (!ee) {
303  ee = new G4ePairProduction();
304  }
305 
306  ph->RegisterProcess(msc, particle);
307  ph->RegisterProcess(eioni, particle);
308  ph->RegisterProcess(brem, particle);
309  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
310  ph->RegisterProcess(ee, particle);
311  ph->RegisterProcess(ss, particle);
312 
313  } else if (particleName == "mu+" || particleName == "mu-") {
314  if (nullptr == mub) {
315  mub = new G4MuBremsstrahlung();
316  mup = new G4MuPairProduction();
317  mumsc = new G4MuMultipleScattering();
318  mumsc->SetEmModel(new G4WentzelVIModel());
319  muss = new G4CoulombScattering();
320  }
321  ph->RegisterProcess(mumsc, particle);
322  ph->RegisterProcess(new G4MuIonisation(), particle);
323  ph->RegisterProcess(mub, particle);
324  ph->RegisterProcess(mup, particle);
325  ph->RegisterProcess(muss, particle);
326 
327  } else if (particleName == "alpha" || particleName == "He3") {
328  if (!pnuc) {
329  pnuc = new G4NuclearStopping();
330  }
331 
332  ph->RegisterProcess(new G4hMultipleScattering(), particle);
333  ph->RegisterProcess(new G4ionIonisation(), particle);
334  ph->RegisterProcess(pnuc, particle);
335 
336  } else if (particleName == "GenericIon") {
337  if (nullptr == hmsc) {
338  hmsc = new G4hMultipleScattering("ionmsc");
339  }
340  if (!pnuc) {
341  pnuc = new G4NuclearStopping();
342  }
343  ph->RegisterProcess(hmsc, particle);
344  ph->RegisterProcess(new G4ionIonisation(), particle);
345  ph->RegisterProcess(pnuc, particle);
346 
347  } else if (particleName == "pi+" || particleName == "pi-") {
348  if (nullptr == pib) {
349  pib = new G4hBremsstrahlung();
350  pip = new G4hPairProduction();
351  pimsc = new G4hMultipleScattering();
352  pimsc->SetEmModel(new G4WentzelVIModel());
353  piss = new G4CoulombScattering();
354  }
355  ph->RegisterProcess(pimsc, particle);
356  ph->RegisterProcess(new G4hIonisation(), particle);
357  ph->RegisterProcess(pib, particle);
358  ph->RegisterProcess(pip, particle);
359  ph->RegisterProcess(piss, particle);
360 
361  } else if (particleName == "kaon+" || particleName == "kaon-") {
362  if (nullptr == kb) {
363  kb = new G4hBremsstrahlung();
364  kp = new G4hPairProduction();
365  kmsc = new G4hMultipleScattering();
366  kmsc->SetEmModel(new G4WentzelVIModel());
367  kss = new G4CoulombScattering();
368  }
369  ph->RegisterProcess(kmsc, particle);
370  ph->RegisterProcess(new G4hIonisation(), particle);
371  ph->RegisterProcess(kb, particle);
372  ph->RegisterProcess(kp, particle);
373  ph->RegisterProcess(kss, particle);
374 
375  } else if (particleName == "proton" || particleName == "anti_proton") {
376  if (nullptr == pb) {
377  pb = new G4hBremsstrahlung();
378  pp = new G4hPairProduction();
379  }
380  if (!pnuc) {
381  pnuc = new G4NuclearStopping();
382  }
383 
384  G4hMultipleScattering* pmsc = new G4hMultipleScattering();
385  pmsc->SetEmModel(new G4WentzelVIModel());
386  G4hIonisation* hIoni = new G4hIonisation();
387  G4CoulombScattering* pss = new G4CoulombScattering();
388 
389  ph->RegisterProcess(pmsc, particle);
390  ph->RegisterProcess(hIoni, particle);
391  ph->RegisterProcess(pb, particle);
392  ph->RegisterProcess(pp, particle);
393  ph->RegisterProcess(pss, particle);
394 
395  } else if (particle->GetPDGCharge() != 0.0) {
396  if (nullptr == hmsc) {
397  hmsc = new G4hMultipleScattering("ionmsc");
398  }
399  ph->RegisterProcess(hmsc, particle);
400  ph->RegisterProcess(new G4hIonisation(), particle);
401  }
402  }
403  if (pnuc) {
404  pnuc->SetMaxKinEnergy(MeV);
405  }
406  // Deexcitation
407  //
408  G4VAtomDeexcitation* de = new G4UAtomicDeexcitation();
409  G4LossTableManager::Instance()->SetAtomDeexcitation(de);
410 }

References GeV, kp, MeV, HiggsValidation_cfi::particleName, EmParticleList::PartNames(), createTree::pp, contentValuesCheck::ss, TableParser::table, and verbose.

Member Data Documentation

◆ verbose

G4int CMSEmStandardPhysicsXS::verbose
private

Definition at line 16 of file CMSEmStandardPhysicsXS.h.

Referenced by CMSEmStandardPhysicsXS(), and ConstructProcess().

VtxSmearedParameters_cfi.Alpha
Alpha
Definition: VtxSmearedParameters_cfi.py:115
pss
std::pair< ALIstring, ALIstring > pss
Definition: Fit.h:25
MeV
const double MeV
contentValuesCheck.ss
ss
Definition: contentValuesCheck.py:33
CMSEmStandardPhysicsXS::verbose
G4int verbose
Definition: CMSEmStandardPhysicsXS.h:16
HiggsValidation_cfi.particleName
particleName
Definition: HiggsValidation_cfi.py:7
GeV
const double GeV
Definition: MathUtil.h:16
edm::LogVerbatim
Definition: MessageLogger.h:297
nanoDQM_cff.Electron
Electron
Definition: nanoDQM_cff.py:62
EmParticleList
Definition: EmParticleList.h:10
EmParticleList::PartNames
const std::vector< G4String > & PartNames() const
Definition: EmParticleList.cc:52
createTree.pp
pp
Definition: createTree.py:17
TableParser.table
table
Definition: TableParser.py:111
kp
int kp
Definition: CascadeWrapper.h:13