CMS 3D CMS Logo

List of all members | Public Member Functions | Static Public Attributes | Private Member Functions | Private Attributes
CSCGasCollisions Class Reference

#include <CSCGasCollisions.h>

Public Member Functions

 CSCGasCollisions (const edm::ParameterSet &pset)
 
bool dumpGasCollisions (void) const
 
bool saveGasCollisions (void) const
 
void setParticleDataTable (const ParticleDataTable *pdt)
 
void simulate (const PSimHit &, std::vector< LocalPoint > &clusters, std::vector< int > &electrons, CLHEP::HepRandomEngine *)
 
virtual ~CSCGasCollisions ()
 

Static Public Attributes

static const int MAX_STEPS = 400
 
static const int N_ENERGY = 63
 
static const int N_ENTRIES = N_GAMMA*N_ENERGY
 
static const int N_GAMMA = 21
 

Private Member Functions

void fillCollisionsForThisGamma (float, std::vector< float > &) const
 
float generateEnergyLoss (double avCollisions, double anmin, double anmax, const std::vector< float > &collisions, CLHEP::HepRandomEngine *) const
 
double generateStep (double avCollisions, CLHEP::HepRandomEngine *) const
 
void ionize (double energyTransferred, LocalPoint startHere) const
 
float lnEnergyLoss (float, const std::vector< float > &) const
 
void readCollisionTable ()
 
void writeSummary (int n_try, int n_steps, double sum_steps, float dedx, const PSimHit &simhit) const
 

Private Attributes

double clusterExtent
 
double deCut
 
bool dumpGasCollisions_
 
double eion
 
double ework
 
double gasDensity
 
const std::string me
 
bool saveGasCollisions_
 
std::vector< float > theCollisionTable
 
CSCCrossGaptheCrossGap
 
std::vector< float > theEnergyBins
 
std::vector< float > theGammaBins
 
const ParticleDataTabletheParticleDataTable
 

Detailed Description

Class to handle CSC gas ionization simulation during digitization.

Author
Tim Cox

This class contains the port of the old CMSIM/ORCA Fortran routine mc_clus.F, and the GEANT3 code it relied on. Of course the version here is much improved :)

Definition at line 27 of file CSCGasCollisions.h.

Constructor & Destructor Documentation

CSCGasCollisions::CSCGasCollisions ( const edm::ParameterSet pset)

Definition at line 54 of file CSCGasCollisions.cc.

References clusterExtent, deCut, dumpGasCollisions(), dumpGasCollisions_, eion, ework, gasDensity, edm::ParameterSet::getUntrackedParameter(), me, readCollisionTable(), and saveGasCollisions().

55  : me("CSCGasCollisions"),
56  gasDensity( 2.1416e-03 ),
57  deCut( 1.e05 ), eion( 14.95 ), ework( 34.0 ), clusterExtent( 0.001 ),
59  theCollisionTable(N_ENTRIES, 0.), theCrossGap( nullptr ),
60  theParticleDataTable(nullptr),
61  saveGasCollisions_ ( false ), dumpGasCollisions_( false )
62 {
63 
64  dumpGasCollisions_ = pset.getUntrackedParameter<bool>("dumpGasCollisions");
65 
66  edm::LogInfo(me) << "Constructing a " << me << ":";
67  edm::LogInfo(me) << "gas density = " << gasDensity << " g/cm3";
68  edm::LogInfo(me) << "max eloss per collision allowed = " << deCut/1000.
69  << " keV (for higher elosses, hits should have been simulated.)";
70  edm::LogInfo(me) << "ionization threshold = " << eion << " eV";
71  edm::LogInfo(me) << "effective work function = " << ework << " eV";
72  edm::LogInfo(me) << "cluster extent = " << clusterExtent*1.e04 << " micrometres";
73  edm::LogInfo(me) << "dump gas collision and simhit information? " << dumpGasCollisions();
74  edm::LogInfo(me) << "save gas collision information? -NOT YET IMPLEMENTED- " << saveGasCollisions();
75 
77 }
T getUntrackedParameter(std::string const &, T const &) const
bool saveGasCollisions(void) const
static const int N_ENERGY
std::vector< float > theGammaBins
const std::string me
bool dumpGasCollisions(void) const
const ParticleDataTable * theParticleDataTable
static const int N_GAMMA
static const int N_ENTRIES
std::vector< float > theCollisionTable
std::vector< float > theEnergyBins
CSCCrossGap * theCrossGap
CSCGasCollisions::~CSCGasCollisions ( )
virtual

Definition at line 79 of file CSCGasCollisions.cc.

References me, and theCrossGap.

79  {
80  edm::LogInfo(me) << "Destructing a " << me;
81  delete theCrossGap;
82 }
const std::string me
CSCCrossGap * theCrossGap

Member Function Documentation

bool CSCGasCollisions::dumpGasCollisions ( void  ) const
inline

Definition at line 38 of file CSCGasCollisions.h.

Referenced by CSCGasCollisions(), generateEnergyLoss(), generateStep(), and simulate().

38 { return dumpGasCollisions_; }
void CSCGasCollisions::fillCollisionsForThisGamma ( float  logGamma,
std::vector< float > &  collisions 
) const
private

Definition at line 545 of file CSCGasCollisions.cc.

References EnergyCorrector::c, mps_fire::i, LogTrace, me, N_ENERGY, N_GAMMA, theCollisionTable, and theGammaBins.

Referenced by simulate().

547 {
548  std::vector<float>::const_iterator bigger = find_if(theGammaBins.begin(),
549  theGammaBins.end(), [&logGamma](auto c){return c > logGamma;});
550 
551  if ( bigger == theGammaBins.end() ) {
552  // use highest bin
553  LogTrace(me) << ": using highest gamma bin"
554  << " for logGamma = " << logGamma;
555  for (int i=0; i<N_ENERGY; ++i)
556  collisions[i] = theCollisionTable[i*N_GAMMA];
557  }
558  else {
559  // use bigger and its lower neighbour
560  std::vector<float>::difference_type ihi = bigger - theGammaBins.begin();
561  if ( ihi > 0 ) {
562  double dlg2 = *bigger--; // and decrement after deref
563  //LogTrace(me) << ": using gamma bins "
564  // << ihi-1 << " and " << ihi;
565  double dlg1 = *bigger; // now the preceding element
566  double dlg = (logGamma-dlg1)/(dlg2-dlg1);
567  double omdlg = 1. - dlg;
568  for (int i=0; i<N_ENERGY; ++i)
569  collisions[i] = theCollisionTable[i*N_GAMMA+ihi-1]*omdlg +
570  theCollisionTable[i*N_GAMMA+ihi]*dlg;
571  }
572  else {
573  // bigger has no lower neighbour
574  LogTrace(me) << ": using lowest gamma bin"
575  << " for logGamma = " << logGamma;
576 
577  for (int i=0; i<N_ENERGY; ++i)
578  collisions[i] = theCollisionTable[i*N_GAMMA];
579  }
580  }
581 }
static const int N_ENERGY
std::vector< float > theGammaBins
const std::string me
static const int N_GAMMA
#define LogTrace(id)
std::vector< float > theCollisionTable
float CSCGasCollisions::generateEnergyLoss ( double  avCollisions,
double  anmin,
double  anmax,
const std::vector< float > &  collisions,
CLHEP::HepRandomEngine *  engine 
) const
private

Definition at line 291 of file CSCGasCollisions.cc.

References CSCCrossGap::addEloss(), CSCCrossGap::beta2(), dumpGasCollisions(), JetChargeProducer_cfi::exp, CSCCrossGap::gamma(), lnEnergyLoss(), cmsBatch::log, LogTrace, me, and theCrossGap.

Referenced by simulate().

293 {
294 // Generate a no. of collisions between collisions[0] and [N_ENERGY-1]
295  float lnColl = log(CLHEP::RandFlat::shoot(engine, anmin, anmax));
296 
297 // Without using CLHEP: approx random between anmin and anmax
298 // double ra = double(rand())/double(RAND_MAX)*avCollisions;
299 // cout << "ra = " << ra << std::endl;
300 // float lnColl = static_cast<float>( log( ra ) );
301 
302  // Find energy loss for that number
303  float lnE = lnEnergyLoss( lnColl, collisions );
304  float eloss = exp(lnE);
305  // Compensate if gamma was actually below 1.1
306  if ( theCrossGap->gamma() < 1.1 ) eloss = eloss * 0.173554/theCrossGap->beta2();
307  LogTrace(me) << "eloss = " << eloss << " eV";
308  // Next line only used to fill container of eloss's for later diagnostic dumps
309  if ( dumpGasCollisions() ) theCrossGap->addEloss( eloss );
310  return eloss;
311 }
void addEloss(float eloss)
Definition: CSCCrossGap.h:47
const std::string me
float lnEnergyLoss(float, const std::vector< float > &) const
bool dumpGasCollisions(void) const
double gamma() const
Definition: CSCCrossGap.h:52
#define LogTrace(id)
double beta2() const
Definition: CSCCrossGap.h:51
CSCCrossGap * theCrossGap
double CSCGasCollisions::generateStep ( double  avCollisions,
CLHEP::HepRandomEngine *  engine 
) const
private

Definition at line 276 of file CSCGasCollisions.cc.

References CSCCrossGap::addStep(), dumpGasCollisions(), LogTrace, me, and theCrossGap.

Referenced by simulate().

277 {
278 // Generate a m.f.p. (1/avCollisions = cm/collision)
279  double step = (CLHEP::RandExponential::shoot(engine))/avCollisions;
280 
281 // Without using CLHEP: approx random exponential by...
282 // double da = double(rand())/double(RAND_MAX);
283 // double step = -log(1.-da)/avCollisions;
284 
285  LogTrace(me) << " step = " << step << " cm";
286  // Next line only used to fill a container of 'step's for later diagnostic dumps
287  if ( dumpGasCollisions() ) theCrossGap->addStep( step );
288  return step;
289 }
const std::string me
bool dumpGasCollisions(void) const
#define LogTrace(id)
void addStep(double step)
Definition: CSCCrossGap.h:46
CSCCrossGap * theCrossGap
step
void CSCGasCollisions::ionize ( double  energyTransferred,
LocalPoint  startHere 
) const
private

Definition at line 313 of file CSCGasCollisions.cc.

References CSCCrossGap::addCluster(), CSCCrossGap::addElectrons(), CSCCrossGap::addElectronToBack(), clusterExtent, eion, ework, gasDensity, LogTrace, me, CSCCrossGap::noOfClusters(), CSCCrossGap::noOfElectrons(), funct::pow(), theCrossGap, and CSCCrossGap::unitVector().

Referenced by simulate().

314 {
315  while ( energyAvailable > eion ) {
316  LogTrace(me) << " NEW CLUSTER " << theCrossGap->noOfClusters() + 1 <<
317  " AT " << startHere;
318  LocalPoint newCluster( startHere );
319  theCrossGap->addCluster(newCluster);
320 
321  //@@ I consider NOT subtracting eion before calculating range to be a bug.
322  //@@ But this changes tuning of the algorithm so leave it until after the big rush to 7_5_0
323  //@@ energyAvailable -= eion;
324 
325  // Sauli CERN 77-09: delta e range with E in MeV (Sauli references Kobetich & Katz 1968
326  // but that has nothing to do with this expression! He seems to have made a mistake.)
327  // I found the Sauli-quoted relationship in R. Glocker, Z. Naturforsch. Ba, 129 (1948):
328  // delta e range R = aE^n with a=710, n=1.72 for E in MeV and R in mg/cm^2
329  // applicable over the range E = 0.001 to 0.3 MeV.
330 
331  // Take HALF that range. //@@ Why? Why not...
332  double range = 0.5 * (0.71/gasDensity)*pow( energyAvailable*1.E-6, 1.72);
333  LogTrace(me) << " range = " << range << " cm";
334  if ( range < clusterExtent ) {
335 
336  // short-range delta e
337  // How many electrons can we make? Now use *average* energy for ionization (not *minimum*)
338  int nelec = static_cast<int>(energyAvailable/ework);
339  LogTrace(me) << "short-range delta energy in = " << energyAvailable << " eV";
340  //energyAvailable -= nelec*(energyAvailable/ework);
341  energyAvailable -= nelec*ework;
342  // If still above eion (minimum, not average) add one more e
343  if ( energyAvailable > eion ) {
344  ++nelec;
345  energyAvailable -= eion;
346  }
347  LogTrace(me) << "short-range delta energy out = " << energyAvailable << " eV, nelec = " << nelec;
348  theCrossGap->addElectrons( nelec );
349  break;
350 
351  }
352  else {
353  // long-range delta e
354  LogTrace(me) << "long-range delta \n"
355  << "no. of electrons in cluster now = " << theCrossGap->noOfElectrons();
356  theCrossGap->addElectrons( 1 ); // Position is at startHere still
357 
358  bool new_range = false;
359  while ( !new_range && (energyAvailable>ework) ) {
360  energyAvailable -= ework;
361  while ( energyAvailable > eion ) {
362  double range2 = 0.5 * 0.71/gasDensity*pow( 1.E-6*energyAvailable, 1.72);
363  double drange = range - range2;
364  LogTrace(me) << " energy left = " << energyAvailable <<
365  " eV, range2 = " << range2 << " cm, drange = " << drange << " cm";
366  if ( drange < clusterExtent ) {
367  theCrossGap->addElectronToBack(); // increment last element
368  }
369  else {
370  startHere += drange*theCrossGap->unitVector(); // update delta e start position
371  range = range2; // update range
372  new_range = true; // Test range again
373  LogTrace(me) << "reset range to range2 = " << range
374  << " from startHere = " << startHere << " and iterate";
375  }
376  break; // out of inner while energyAvailable>eion
377 
378  } // inner while energyAvailable>eion
379 
380  } // while !new_range && energyAvailable>ework
381 
382  // energyAvailable now less than ework, but still may be over eion...add an e
383  if ( energyAvailable > eion ) {
384  energyAvailable -= ework; // yes, it may go negative
385  theCrossGap->addElectronToBack(); // add one more e
386  }
387 
388  } // if range
389 
390  } // outer while energyAvailable>eion
391 }
int noOfClusters() const
Definition: CSCCrossGap.h:34
void addElectronToBack()
Definition: CSCCrossGap.h:44
const std::string me
LocalVector unitVector() const
Definition: CSCCrossGap.h:54
int noOfElectrons() const
Definition: CSCCrossGap.h:36
#define LogTrace(id)
CSCCrossGap * theCrossGap
void addCluster(LocalPoint here)
Definition: CSCCrossGap.h:42
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
void addElectrons(int nelec=1)
Definition: CSCCrossGap.h:43
float CSCGasCollisions::lnEnergyLoss ( float  lnCollisions,
const std::vector< float > &  collisions 
) const
private

Definition at line 505 of file CSCGasCollisions.cc.

References EnergyCorrector::c, spr::find(), LogTrace, me, and theEnergyBins.

Referenced by generateEnergyLoss().

506  {
507 
508  float lnE = -1.;
509 
510  // Find collision[] bin in which lnCollisions falls
511  std::vector<float>::const_iterator it = find(collisions.begin(),
512  collisions.end(), lnCollisions );
513 
514  if ( it != collisions.end() ) {
515  // found the value
516  std::vector<float>::difference_type ihi = it - collisions.begin();
517  LogTrace(me) << ": using one energy bin " << ihi << " = "
518  << theEnergyBins[ihi]
519  << " for lnCollisions = " << lnCollisions;
520  lnE = theEnergyBins[ihi];
521  }
522  else {
523  // interpolate the value
524  std::vector<float>::const_iterator loside = find_if(collisions.begin(),
525  collisions.end(), [&lnCollisions](auto c){return c < lnCollisions;});
526  std::vector<float>::difference_type ilo = loside - collisions.begin();
527  if ( ilo > 0 ) {
528  LogTrace(me) << ": using energy bin "
529  << ilo-1 << " and " << ilo;
530  lnE = theEnergyBins[ilo-1] + (lnCollisions-collisions[ilo-1])*
531  (theEnergyBins[ilo]-theEnergyBins[ilo-1]) /
532  (collisions[ilo]-collisions[ilo-1]);
533  }
534  else {
535  LogTrace(me) << ": using one energy bin 0 = "
536  << theEnergyBins[0]
537  << " for lnCollisions = " << lnCollisions;
538  lnE = theEnergyBins[0]; //@@ WHAT ELSE TO DO?
539  }
540  }
541 
542  return lnE;
543 }
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
Definition: FindCaloHit.cc:20
const std::string me
#define LogTrace(id)
std::vector< float > theEnergyBins
void CSCGasCollisions::readCollisionTable ( )
private

Definition at line 84 of file CSCGasCollisions.cc.

References Exception, connectstrParser::f1, groupFilesInBlocks::fin, mps_fire::i, LogTrace, me, N_ENERGY, N_ENTRIES, N_GAMMA, theCollisionTable, theEnergyBins, and theGammaBins.

Referenced by CSCGasCollisions().

84  {
85 
86  // I'd prefer to allow comments in the data file which means
87  // complications of reading line-by-line and then item-by-item.
88 
89  // Is float OK? Or do I need double?
90 
91  // Do I need any sort of error trapping?
92 
93  // We use the default CMSSW data file path
94  // We use the default file name 'collisions.dat'
95 
96  // This can be reset in .orcarc by SimpleConfigurable
97  // Muon:Endcap:CollisionsFile
98 
99  // TODO make configurable
100  string colliFile = "SimMuon/CSCDigitizer/data/collisions.dat";
101  edm::FileInPath f1{ colliFile };
102  edm::LogInfo(me) << ": reading " << f1.fullPath();
103 
104  ifstream fin{ f1.fullPath() };
105 
106  if (fin.fail()) {
107  string errorMessage = "Cannot open input file " + f1.fullPath();
108  edm::LogError("CSCGasCollisions") << errorMessage;
109  throw cms::Exception(errorMessage);
110  }
111 
112  fin.clear( ); // Clear eof read status
113  fin.seekg( 0, ios::beg ); // Position at start of file
114 
115  // @@ We had better have the right sizes everywhere or all
116  // hell will break loose. There's no trapping.
117  LogTrace(me) << "Reading gamma bins";
118  int j = 0;
119  for(int i = 0; i<N_GAMMA; ++i) {
120  fin >> theGammaBins[i];
121  LogTrace(me) << ++j << " " << theGammaBins[i];
122  }
123 
124  j = 0;
125  LogTrace(me) << "Reading energy bins \n";
126  for(int i = 0; i<N_ENERGY; ++i) {
127  fin >> theEnergyBins[i];
128  LogTrace(me) << ++j << " " << theEnergyBins[i];
129  }
130 
131  j = 0;
132  LogTrace(me) << "Reading collisions table \n";
133 
134  for(int i = 0; i<N_ENTRIES; ++i) {
135  fin >> theCollisionTable[i];
136  LogTrace(me) << ++j << " " << theCollisionTable[i];
137  }
138 
139  fin.close();
140 }
static const int N_ENERGY
std::vector< float > theGammaBins
const std::string me
static const int N_GAMMA
#define LogTrace(id)
static const int N_ENTRIES
std::vector< float > theCollisionTable
std::vector< float > theEnergyBins
bool CSCGasCollisions::saveGasCollisions ( void  ) const
inline

Definition at line 39 of file CSCGasCollisions.h.

Referenced by CSCGasCollisions().

39 { return saveGasCollisions_; }
void CSCGasCollisions::setParticleDataTable ( const ParticleDataTable pdt)

Definition at line 143 of file CSCGasCollisions.cc.

References theParticleDataTable.

Referenced by CSCWireHitSim::setParticleDataTable().

144 {
145  theParticleDataTable = pdt;
146 }
const ParticleDataTable * theParticleDataTable
void CSCGasCollisions::simulate ( const PSimHit simhit,
std::vector< LocalPoint > &  clusters,
std::vector< int > &  electrons,
CLHEP::HepRandomEngine *  engine 
)

Definition at line 149 of file CSCGasCollisions.cc.

References deCut, dumpGasCollisions(), eion, CSCCrossGap::electrons(), PSimHit::energyLoss(), PSimHit::entryPoint(), PSimHit::exitPoint(), JetChargeProducer_cfi::exp, fillCollisionsForThisGamma(), generateEnergyLoss(), generateStep(), CSCCrossGap::ionClusters(), ionize(), CSCCrossGap::length(), CSCCrossGap::logGamma(), LogTrace, ResonanceBuilder::mass, MAX_STEPS, me, N_ENERGY, PSimHit::pabs(), PSimHit::particleType(), theCrossGap, theParticleDataTable, CSCCrossGap::unitVector(), and writeSummary().

Referenced by CSCWireHitSim::getIonizationClusters().

150  {
151 
152  const float epsilonL = 0.01; // Shortness of simhit 'length'
153  // const float max_gap_z = 1.5; // Gas gaps are 0.5 or 1.0 cm
154 
155  // Note that what I call the 'gap' may in fact be the 'length' of a PSimHit which
156  // does not start and end on the gap edges. This confuses the nomenclature at least.
157 
158  double mom = simhit.pabs(); // in GeV/c - see MuonSensitiveDetector.cc
159  // int iam = simhit.particleType(); // PDG type
160  delete theCrossGap; // before building new one
161  assert(theParticleDataTable != nullptr);
162  ParticleData const * particle = theParticleDataTable->particle( simhit.particleType() );
163  double mass = 0.105658; // assume a muon
164  if(particle == nullptr)
165  {
166  edm::LogError("CSCGasCollisions") << "Cannot find particle of type " << simhit.particleType()
167  << " in the PDT";
168  }
169  else
170  {
171  mass = particle->mass();
172  }
173 
174  theCrossGap = new CSCCrossGap( mass, mom, simhit.exitPoint() - simhit.entryPoint() );
175  float gapSize = theCrossGap->length();
176 
177  // Test the simhit 'length' (beware of angular effects)
178  // if ( gapSize <= epsilonL || gapSize > max_gap_z ) {
179  if ( gapSize <= epsilonL ) {
180  edm::LogVerbatim("CSCDigitizer")
181  << "[CSCGasCollisions] WARNING! simhit entry and exit are too close - skipping simhit:"
182  << "\n entry = " << simhit.entryPoint()
183  << ": exit = " << simhit.exitPoint()
184  << "\n particle type = " << simhit.particleType() << " : momentum = " << simhit.pabs()
185  << " GeV/c : energy loss = " << simhit.energyLoss()*1.E06 << " keV"
186  << ", gapSize = " << gapSize << " cm (< epsilonL = " << epsilonL << " cm)";
187  return; //@@ Just skip this PSimHit
188  }
189 
190  // Interpolate the table for current gamma value
191  // Extract collisions binned by energy loss values, for this gamma
192  std::vector<float> collisions(N_ENERGY);
193  double loggam = theCrossGap->logGamma();
194  fillCollisionsForThisGamma( static_cast<float>(loggam), collisions );
195 
196  double anmin = exp(collisions[N_ENERGY-1]);
197  double anmax = exp(collisions[0]);
198  double amu = anmax - anmin;
199 
200  LogTrace(me) << "collisions extremes = " << collisions[N_ENERGY-1]
201  << ", " << collisions[0] << "\n"
202  << "anmin = " << anmin << ", anmax = " << anmax << "\n"
203  << "amu = " << amu << "\n";
204 
205  float dedx = 0.; // total energy loss
206  double sum_steps = 0.; // total distance across gap (along simhit direction)
207  int n_steps = 0; // no. of steps/primary collisions
208  int n_try = 0; // no. of tries to generate steps
209  double step = -1.; // Sentinel for start
210 
211  LocalPoint layerLocalPoint( simhit.entryPoint() );
212 
213  // step/primary collision loop
214  while ( sum_steps < gapSize) {
215  ++n_try;
216  if ( n_try > MAX_STEPS ) {
217  int maxst = MAX_STEPS;
218  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] WARNING! n_try = " << n_try
219  << " is > MAX_STEPS = " << maxst << " - skipping simhit:"
220  << "\n entry = " << simhit.entryPoint()
221  << ": exit = " << simhit.exitPoint()
222  << "\n particle type = " << simhit.particleType() << " : momentum = " << simhit.pabs()
223  << " GeV/c : energy loss = " << simhit.energyLoss()*1.E06 << " keV"
224  << "\n gapSize = " << gapSize << " cm, last step = " << step
225  << " cm, sum_steps = " << sum_steps << " cm, n_steps = " << n_steps;
226  break;
227  }
228  step = generateStep( amu, engine );
229  if ( sum_steps + step > gapSize ) break; // this step goes too far
230 
231  float eloss = generateEnergyLoss( amu, anmin, anmax, collisions, engine );
232 
233  // Is the eloss too large? (then GEANT should have produced hits!)
234  if ( eloss > deCut ) {
235  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] WARNING! eloss = " << eloss
236  << " eV is too large (> " << deCut << " eV) - trying another collision";
237  continue; // to generate another collision/step
238  }
239 
240  dedx += eloss; // the energy lost from the ionizing particle
241  sum_steps += step; // the position of the ionizing particle
242  ++n_steps; // the number of primary collisions
243 
244  if (n_steps > MAX_STEPS ) { // Extra-careful trap for bizarreness
245  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] WARNING! " << n_steps
246  << " is too many steps - skipping simhit:"
247  << "\n entry = " << simhit.entryPoint()
248  << ": exit = " << simhit.exitPoint()
249  << "\n particle type = " << simhit.particleType() << " : momentum = " << simhit.pabs()
250  << " GeV/c : energy loss = " << simhit.energyLoss()*1.E06 << " keV"
251  << "\ngapSize=" << gapSize << " cm, last step=" << step << " cm, sum_steps=" << sum_steps << " cm";
252  break;
253  }
254  LogTrace(me) << "sum_steps = " << sum_steps << " cm , dedx = " << dedx << " eV";
255 
256  // Generate ionization.
257  // eion is the minimum energy at which ionization can occur in the gas
258  if ( eloss > eion ) {
259  layerLocalPoint += step * theCrossGap->unitVector(); // local point where the collision occurs
260  ionize( eloss, layerLocalPoint );
261  }
262  else {
263  LogTrace(me) << "Energy available = " << eloss << " eV is too low for ionization (< eion = " << eion << " eV)";
264  }
265 
266  } // step/collision loop
267 
268  if ( dumpGasCollisions() ) writeSummary( n_try, n_steps, sum_steps, dedx, simhit );
269 
270  // Return values in two container arguments
271  positions = theCrossGap->ionClusters();
273  return;
274 }
std::vector< int > electrons() const
Definition: CSCCrossGap.h:35
static const int N_ENERGY
std::vector< LocalPoint > ionClusters() const
Definition: CSCCrossGap.h:33
const std::string me
Local3DPoint exitPoint() const
Exit point in the local Det frame.
Definition: PSimHit.h:38
bool dumpGasCollisions(void) const
const ParticleDataTable * theParticleDataTable
LocalVector unitVector() const
Definition: CSCCrossGap.h:54
static const int MAX_STEPS
float pabs() const
fast and more accurate access to momentumAtEntry().mag()
Definition: PSimHit.h:63
HepPDT::ParticleData ParticleData
void ionize(double energyTransferred, LocalPoint startHere) const
#define LogTrace(id)
void writeSummary(int n_try, int n_steps, double sum_steps, float dedx, const PSimHit &simhit) const
double logGamma(double mass, float momentum)
Definition: CSCCrossGap.cc:23
double generateStep(double avCollisions, CLHEP::HepRandomEngine *) const
float energyLoss() const
The energy deposit in the PSimHit, in ???.
Definition: PSimHit.h:75
int particleType() const
Definition: PSimHit.h:85
float generateEnergyLoss(double avCollisions, double anmin, double anmax, const std::vector< float > &collisions, CLHEP::HepRandomEngine *) const
float length() const
Definition: CSCCrossGap.h:55
void fillCollisionsForThisGamma(float, std::vector< float > &) const
CSCCrossGap * theCrossGap
step
Local3DPoint entryPoint() const
Entry point in the local Det frame.
Definition: PSimHit.h:35
void CSCGasCollisions::writeSummary ( int  n_try,
int  n_steps,
double  sum_steps,
float  dedx,
const PSimHit simhit 
) const
private

Definition at line 393 of file CSCGasCollisions.cc.

References EnergyCorrector::c, eion, CSCCrossGap::electrons(), nano_cff::electrons, CSCCrossGap::eLossPerStep(), PSimHit::energyLoss(), PSimHit::entryPoint(), PSimHit::exitPoint(), spr::find(), objects.autophobj::float, mps_fire::i, CSCCrossGap::ionClusters(), MAX_STEPS, PSimHit::pabs(), PSimHit::particleType(), CSCCrossGap::stepLengths(), customisers::steps, and theCrossGap.

Referenced by simulate().

395 {
396  // Switched from std::cout to LogVerbatim, Mar 2015
397 
398  std::vector<LocalPoint> ion_clusters = theCrossGap->ionClusters();
399  std::vector<int> electrons = theCrossGap->electrons();
400  std::vector<float> elosses = theCrossGap->eLossPerStep();
401  std::vector<double> steps = theCrossGap->stepLengths();
402 
403  edm::LogVerbatim("CSCDigitizer") << "------------------"
404  << "\nAFTER CROSSING GAP";
405  /*
406  edm::LogVerbatim("CSCDigitizer") << "no. of steps tried = " << n_try
407  << "\nno. of steps from theCrossGap = " << theCrossGap->noOfSteps()
408  << "\nsize of steps vector = " << steps.size();
409 
410  edm::LogVerbatim("CSCDigitizer") << "no. of collisions (steps) = " << n_steps
411  << "\nsize of elosses vector = " << elosses.size()
412  << "\nsize of ion clusters vector = " << ion_clusters.size()
413  << "\nsize of electrons vector = " << electrons.size();
414  */
415 
416  size_t nsteps = n_steps; // force ridiculous type conversion
417  size_t mstep = steps.size() - 1; // final step gets filled but is outside gas gap - unless we reach MAX_STEPS
418  if ( (nsteps != MAX_STEPS) && (nsteps != mstep) ) {
419  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] WARNING! no. of steps = " << nsteps
420  << " .ne. steps.size()-1 = " << mstep;
421  }
422  size_t meloss = elosses.size();
423 
424  if ( nsteps != meloss ){
425  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] WARNING! no. of steps = " << nsteps
426  << " .ne. no. of elosses = " << meloss;
427  }
428  else {
429  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] # / length of step / energy loss per collision:";
430  for ( size_t i = 0; i != nsteps; ++i ) {
431  edm::LogVerbatim("CSCDigitizer") << i+1 << " / S: " << steps[i] << " / E: " << elosses[i];
432  }
433  }
434 
435  size_t mclus = ion_clusters.size();
436  size_t melec = electrons.size();
437 
438  if ( mclus != melec ){
439  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] WARNING! size of cluster vector = " << mclus
440  << " .ne. size of electrons vector = " << melec;
441  }
442  else {
443  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] # / postion of cluster / electrons per cluster: ";
444  for ( size_t i = 0; i != mclus; ++i ) {
445  edm::LogVerbatim("CSCDigitizer") << i+1 << " / I: " << ion_clusters[i] << " / E: " << electrons[i];
446  }
447  }
448 
449  int n_ic = count_if( elosses.begin(), elosses.end(), [&](auto c){return c > this->eion;} );
450 
451  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] total no. of collision steps = " << n_steps;
452  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] total sum of steps = " << sum_steps << " cm";
453  if ( nsteps > 0 ) edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] average step length = " <<
454  sum_steps/float(nsteps) << " cm";
455  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] total energy loss across gap = " <<
456  dedx << " eV = " << dedx/1000. << " keV";
457  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] no. of primary ionizing collisions across gap = no. with eloss > eion = "
458  << eion << " eV = " << n_ic;
459  if ( nsteps > 0 ) edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] average energy loss/collision = " <<
460  dedx/float(nsteps) << " eV";
461 
462  std::vector<int>::const_iterator bigger = find(electrons.begin(), electrons.end(), 0 );
463  if ( bigger != electrons.end() ) {
464  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] TROUBLE! There is a cluster with 0 electrons.";
465  }
466 
467  int n_e = accumulate(electrons.begin(), electrons.end(), 0 );
468 
469  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] SUMMARY: simhit"
470  << "\n entry = " << simhit.entryPoint()
471  << ": exit = " << simhit.exitPoint()
472  << "\n particle type = " << simhit.particleType() << " : momentum = " << simhit.pabs()
473  << " GeV/c : energy loss = " << simhit.energyLoss()*1.E06 << " keV";
474 
475  if ( nsteps > 0 ) {
476  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisions] SUMMARY: ionization"
477  << " : steps= " << nsteps << " : sum(steps)= " << sum_steps << " cm : <step>= "
478  << sum_steps/float(nsteps) << " cm"
479  << " : ionizing= " << n_ic << " : ionclus= " << mclus << " : total e= " << n_e
480  << " : <dedx/step>= " << dedx/float(nsteps)
481  << " eV : <e/ionclus>= " << float(n_e)/float(mclus)
482  << " : dedx= " << dedx/1000. << " keV";
483  }
484  else {
485  edm::LogVerbatim("CSCDigitizer") << "[CSCGasCollisons] ERROR? no collision steps!";
486  }
487 
488  // Turn off output file - used for initial development
489  // if ( saveGasCollisions() ) {
490  // ofstream of0("osteplen.dat",ios::app);
491  // std::copy( steps.begin(), steps.end(), std::ostream_iterator<float>(of0,"\n"));
492 
493  // ofstream of1("olperc.dat",ios::app);
494  // std::copy( elosses.begin(), elosses.end(), std::ostream_iterator<float>(of1,"\n"));
495 
496  // ofstream of2("oclpos.dat",ios::app);
497  // std::copy( ion_clusters.begin(), ion_clusters.end(), std::ostream_iterator<LocalPoint>(of2,"\n"));
498 
499  // ofstream of3("oepercl.dat",ios::app);
500  // std::copy( electrons.begin(), electrons.end(), std::ostream_iterator<int>(of3,"\n"));
501  // }
502 
503 }
std::vector< int > electrons() const
Definition: CSCCrossGap.h:35
std::vector< LocalPoint > ionClusters() const
Definition: CSCCrossGap.h:33
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
Definition: FindCaloHit.cc:20
std::vector< float > eLossPerStep() const
Definition: CSCCrossGap.h:39
std::vector< double > stepLengths() const
Definition: CSCCrossGap.h:37
Local3DPoint exitPoint() const
Exit point in the local Det frame.
Definition: PSimHit.h:38
static const int MAX_STEPS
float pabs() const
fast and more accurate access to momentumAtEntry().mag()
Definition: PSimHit.h:63
float energyLoss() const
The energy deposit in the PSimHit, in ???.
Definition: PSimHit.h:75
int particleType() const
Definition: PSimHit.h:85
CSCCrossGap * theCrossGap
Local3DPoint entryPoint() const
Entry point in the local Det frame.
Definition: PSimHit.h:35

Member Data Documentation

double CSCGasCollisions::clusterExtent
private

Definition at line 69 of file CSCGasCollisions.h.

Referenced by CSCGasCollisions(), and ionize().

double CSCGasCollisions::deCut
private

Definition at line 66 of file CSCGasCollisions.h.

Referenced by CSCGasCollisions(), and simulate().

bool CSCGasCollisions::dumpGasCollisions_
private

Definition at line 78 of file CSCGasCollisions.h.

Referenced by CSCGasCollisions().

double CSCGasCollisions::eion
private

Definition at line 67 of file CSCGasCollisions.h.

Referenced by CSCGasCollisions(), ionize(), simulate(), and writeSummary().

double CSCGasCollisions::ework
private

Definition at line 68 of file CSCGasCollisions.h.

Referenced by CSCGasCollisions(), and ionize().

double CSCGasCollisions::gasDensity
private

Definition at line 60 of file CSCGasCollisions.h.

Referenced by CSCGasCollisions(), and ionize().

const int CSCGasCollisions::MAX_STEPS = 400
static

Definition at line 44 of file CSCGasCollisions.h.

Referenced by simulate(), and writeSummary().

const std::string CSCGasCollisions::me
private
const int CSCGasCollisions::N_ENERGY = 63
static

Definition at line 42 of file CSCGasCollisions.h.

Referenced by fillCollisionsForThisGamma(), readCollisionTable(), and simulate().

const int CSCGasCollisions::N_ENTRIES = N_GAMMA*N_ENERGY
static

Definition at line 43 of file CSCGasCollisions.h.

Referenced by readCollisionTable().

const int CSCGasCollisions::N_GAMMA = 21
static

Definition at line 41 of file CSCGasCollisions.h.

Referenced by fillCollisionsForThisGamma(), and readCollisionTable().

bool CSCGasCollisions::saveGasCollisions_
private

Definition at line 77 of file CSCGasCollisions.h.

std::vector<float> CSCGasCollisions::theCollisionTable
private

Definition at line 73 of file CSCGasCollisions.h.

Referenced by fillCollisionsForThisGamma(), and readCollisionTable().

CSCCrossGap* CSCGasCollisions::theCrossGap
private
std::vector<float> CSCGasCollisions::theEnergyBins
private

Definition at line 72 of file CSCGasCollisions.h.

Referenced by lnEnergyLoss(), and readCollisionTable().

std::vector<float> CSCGasCollisions::theGammaBins
private

Definition at line 71 of file CSCGasCollisions.h.

Referenced by fillCollisionsForThisGamma(), and readCollisionTable().

const ParticleDataTable* CSCGasCollisions::theParticleDataTable
private

Definition at line 76 of file CSCGasCollisions.h.

Referenced by setParticleDataTable(), and simulate().