CMS 3D CMS Logo

CSCUpgradeMotherboardLUT.cc
Go to the documentation of this file.
2 
4 {
5  // Keep in mind that ME1A is considered an extension of ME1B
6  // This means that ME1A half-strips start at 128 and end at 223
8  {128,223},{128,223},{128,223},{128,223},{128,223},
9  {128,223},{128,223},{128,223},{128,223},{128,223},
10  {128,223},{128,223},{128,205},{128,189},{128,167},
11  {128,150},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
12  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
13  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
14  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
15  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
16  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
17  {-1,-1},{-1,-1},{-1,-1}
18  };
19  // When the half-strips are triple-ganged, (Run-1)
20  // ME1A half-strips go from 128 to 159
22  {128,159},{128,159},{128,159},{128,159},{128,159},
23  {128,159},{128,159},{128,159},{128,159},{128,159},
24  {128,159},{128,159},{128,159},{128,159},{128,159},
25  {128,150},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
26  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
27  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
28  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
29  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
30  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
31  {-1,-1},{-1,-1},{-1,-1}
32  };
33  // ME1B half-strips start at 0 and end at 127
35  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
36  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
37  {100, 127},{73, 127},{47, 127},{22, 127},{0, 127},
38  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
39  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
40  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
41  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
42  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
43  {0, 127},{0, 127},{0, 127},{0, 127},{0, 105},
44  {0, 93},{0, 78},{0, 63}
45  };
46 }
47 
48 bool
50  int theEndcap, bool gangedME1a) const
51  {
52  if ( !c.isValid() || !a.isValid() ) return false;
53  int key_hs = c.getKeyStrip();
54  int key_wg = a.getKeyWG();
55  // ME1/a half-strip starts at 128
56  if ( key_hs > CSCConstants::MAX_HALF_STRIP_ME1B )
57  {
58  if ( !gangedME1a )
59  {
60  // wrap around ME11 HS number for -z endcap
61  if (theEndcap==2) {
62  // first subtract 128
64  // flip the HS
66  // then add 128 again
68  }
69  if ( key_hs >= lut_wg_vs_hs_me1a[key_wg][0] &&
70  key_hs <= lut_wg_vs_hs_me1a[key_wg][1] ) return true;
71  return false;
72  }
73  else
74  {
75  // wrap around ME11 HS number for -z endcap
76  if (theEndcap==2) {
77  // first subtract 128
79  // flip the HS
81  // then add 128 again
83  }
84  if ( key_hs >= lut_wg_vs_hs_me1ag[key_wg][0] &&
85  key_hs <= lut_wg_vs_hs_me1ag[key_wg][1] ) return true;
86  return false;
87  }
88  }
89  // ME1/b half-strip ends at 127
90  if ( key_hs <= CSCConstants::MAX_HALF_STRIP_ME1B )
91  {
92  if (theEndcap==2) key_hs = CSCConstants::MAX_HALF_STRIP_ME1B - key_hs;
93  if ( key_hs >= lut_wg_vs_hs_me1b[key_wg][0] &&
94  key_hs <= lut_wg_vs_hs_me1b[key_wg][1] ) return true;
95  }
96  return false;
97  }
98 
100  : lut_wg_eta_odd(0)
101  , lut_wg_eta_even(0)
102  , lut_pt_vs_dphi_gemcsc(0)
103 
104  , gem_roll_eta_limits_odd_l1(0)
105  , gem_roll_eta_limits_odd_l2(0)
106  , gem_roll_eta_limits_even_l1(0)
107  , gem_roll_eta_limits_even_l2(0)
108 
109  , csc_wg_to_gem_roll_odd_l1(0)
110  , csc_wg_to_gem_roll_odd_l2(0)
111  , csc_wg_to_gem_roll_even_l1(0)
112  , csc_wg_to_gem_roll_even_l2(0)
113 {
114 }
115 
116 std::vector<std::pair<int,int> >
118 {
119  if (par==Parity::Even){ return layer==1 ? csc_wg_to_gem_roll_even_l1 : csc_wg_to_gem_roll_even_l2; }
120  else { return layer==1 ? csc_wg_to_gem_roll_odd_l1 : csc_wg_to_gem_roll_odd_l2; }
121 }
122 
123 std::vector<int>
125 {
126  if (par==Parity::Even){ return layer==1 ? gem_roll_to_csc_wg_even_l1 : gem_roll_to_csc_wg_even_l2; }
127  else { return layer==1 ? gem_roll_to_csc_wg_odd_l1 : gem_roll_to_csc_wg_odd_l2; }
128 }
129 
130 std::vector<int>
132 {
133  if (p==CSCPart::ME1A) { return par==Parity::Even ? gem_pad_to_csc_hs_me1a_even : gem_pad_to_csc_hs_me1a_odd; }
134  else { return par==Parity::Even ? gem_pad_to_csc_hs_me1b_even : gem_pad_to_csc_hs_me1b_odd; }
135 }
136 
137 std::vector<int>
139 {
140  return par==Parity::Even ? gem_pad_to_csc_hs_even : gem_pad_to_csc_hs_odd;
141 }
142 
143 std::vector<std::pair<int,int> >
145 {
146  return par==Parity::Even ? csc_hs_to_gem_pad_even : csc_hs_to_gem_pad_odd;
147 }
148 
149 std::vector<std::pair<int,int> >
151 {
152  if (p==CSCPart::ME1A) { return par==Parity::Even ? csc_hs_to_gem_pad_me1a_even : csc_hs_to_gem_pad_me1a_odd; }
153  else { return par==Parity::Even ? csc_hs_to_gem_pad_me1b_even : csc_hs_to_gem_pad_me1b_odd; }
154 }
155 
157 {
158 }
159 
160 
163 {
164  lut_wg_eta_odd = {
165  {2.4466, 2.45344},
166  {2.33403, 2.43746}, {2.28122, 2.38447}, {2.23122, 2.33427}, {2.18376, 2.2866}, {2.1386, 2.24124},
167  {2.09556, 2.19796}, {2.05444, 2.15662}, {2.01511, 2.11704}, {1.97741, 2.07909}, {1.94124, 2.04266},
168  {1.90649, 2.00764}, {1.87305, 1.97392}, {1.84084, 1.94143}, {1.80978, 1.91008}, {1.77981, 1.87981},
169  {1.75086, 1.85055}, {1.72286, 1.82225}, {1.69577, 1.79484}, {1.66954, 1.76828}, {1.64412, 1.74253},
170  {1.61946, 1.71754}, {1.60584, 1.69328}, {1.60814, 1.6697}
171  };
172 
173  lut_wg_eta_even = {
174  {2.3981, 2.40492},
175  {2.28578, 2.38883}, {2.23311, 2.33595}, {2.18324, 2.28587}, {2.13592, 2.23831}, {2.09091, 2.19306},
176  {2.048, 2.14991}, {2.00704, 2.10868}, {1.96785, 2.06923}, {1.93031, 2.03141}, {1.8943, 1.9951},
177  {1.8597, 1.96021}, {1.82642, 1.92663}, {1.79438, 1.89427}, {1.76349, 1.86306}, {1.73369, 1.83293},
178  {1.70491, 1.80382}, {1.67709, 1.77566}, {1.65018, 1.7484}, {1.62413, 1.72199}, {1.59889, 1.69639},
179  {1.57443, 1.67155}, {1.56088, 1.64745}, {1.5631, 1.62403}
180  };
181 
182  /*
183  98% acceptance cuts of the GEM-CSC bending angle in ME1b
184  for various pT thresholds and for even/odd chambers
185  */
187  {3, 0.03971647, 0.01710244},
188  {5, 0.02123785, 0.00928431},
189  {7, 0.01475524, 0.00650928},
190  {10, 0.01023299, 0.00458796},
191  {15, 0.00689220, 0.00331313},
192  {20, 0.00535176, 0.00276152},
193  {30, 0.00389050, 0.00224959},
194  {40, 0.00329539, 0.00204670}
195  };
196 
198  {1.61082, 1.67865},
199  {1.67887, 1.7528},
200  {1.75303, 1.82091},
201  {1.82116, 1.89486},
202  {1.89513, 1.96311},
203  {1.9634, 2.037},
204  {2.03732, 2.10527},
205  {2.10562, 2.17903}
206  };
207 
209  {1.61705, 1.68494},
210  {1.68515, 1.75914},
211  {1.75938, 1.8273},
212  {1.82756, 1.9013},
213  {1.90158, 1.96959},
214  {1.96988, 2.04352},
215  {2.04384, 2.11181},
216  {2.11216, 2.1856}
217  };
218 
220  {1.55079, 1.62477},
221  {1.62497, 1.70641},
222  {1.70663, 1.78089},
223  {1.78113, 1.86249},
224  {1.86275, 1.9371},
225  {1.93739, 2.01855},
226  {2.01887, 2.09324},
227  {2.09358, 2.17456}
228  };
229 
231  {1.55698, 1.63103},
232  {1.63123, 1.71275},
233  {1.71297, 1.78728},
234  {1.78752, 1.86894},
235  {1.86921, 1.94359},
236  {1.94388, 2.02509},
237  {2.02541, 2.09981},
238  {2.10015, 2.18115}
239  };
240 
242  {-99, -99},
243  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99},
244  {7, -99}, {7, -99}, {7, 8}, {7, 8}, {6, 8}, {6, 7}, {6, 7}, {6, 7}, {5, 7}, {5, 6},
245  {5, 6}, {4, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 5}, {3, 4}, {3, 4},
246  {2, 4}, {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
247  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
248  };
249 
251  {-99, -99},
252  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99},
253  {7, -99}, {7, -99}, {7, 8}, {7, 8}, {6, 8}, {6, 7}, {6, 7}, {6, 7}, {5, 7}, {5, 6},
254  {5, 6}, {4, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 5}, {3, 4}, {3, 4},
255  {2, 4}, {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
256  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
257  };
258 
260  {-99, -99},
261  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99}, {8, -99}, {7, -99},
262  {7, 8}, {7, 8}, {6, 8}, {6, 8}, {6, 7}, {6, 7}, {5, 7}, {5, 6}, {5, 6}, {5, 6},
263  {5, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 4}, {3, 4}, {3, 4},
264  {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
265  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
266  };
267 
269  {-99, -99},
270  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99}, {8, -99}, {7, -99},
271  {7, 8}, {7, 8}, {6, 8}, {6, 8}, {6, 7}, {6, 7}, {5, 7}, {5, 6}, {5, 6}, {5, 6},
272  {5, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 4}, {3, 4}, {3, 4},
273  {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
274  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
275  };
276 
281 
283  93,
284  92, 92, 92, 91, 91, 90, 90, 89, 89, 88,
285  88, 87, 87, 86, 86, 85, 85, 84, 84, 83,
286  83, 83, 82, 82, 81, 81, 80, 80, 79, 79,
287  78, 78, 77, 77, 76, 76, 75, 75, 74, 74,
288  73, 73, 73, 72, 72, 71, 71, 70, 70, 69,
289  69, 68, 68, 67, 67, 66, 66, 65, 65, 64,
290  64, 63, 63, 63, 62, 62, 61, 61, 60, 60,
291  59, 59, 58, 58, 57, 57, 56, 56, 55, 55,
292  54, 54, 53, 53, 53, 52, 52, 51, 51, 50,
293  50, 49, 49, 48, 48, 47, 47, 46, 46, 45,
294  45, 44, 44, 43, 43, 43, 42, 42, 41, 41,
295  40, 40, 39, 39, 38, 38, 37, 37, 36, 36,
296  35, 35, 34, 34, 33, 33, 33, 32, 32, 31,
297  31, 30, 30, 29, 29, 28, 28, 27, 27, 26,
298  26, 25, 25, 24, 24, 23, 23, 23, 22, 22,
299  21, 21, 20, 20, 19, 19, 18, 18, 17, 17,
300  16, 16, 15, 15, 14, 14, 13, 13, 13, 12,
301  12, 11, 11, 10, 10, 9, 9, 8, 8, 7,
302  7, 6, 6, 5, 5, 4, 4, 4, 3, 3,
303  2
304  };
305 
307  123,
308  123, 122, 121, 121, 120, 119, 119, 118, 118, 117,
309  116, 116, 115, 114, 114, 113, 113, 112, 111, 111,
310  110, 110, 109, 108, 108, 107, 106, 106, 105, 105,
311  104, 103, 103, 102, 101, 101, 100, 100, 99, 98,
312  98, 97, 96, 96, 95, 95, 94, 93, 93, 92,
313  91, 91, 90, 90, 89, 88, 88, 87, 86, 86,
314  85, 85, 84, 83, 83, 82, 81, 81, 80, 80,
315  79, 78, 78, 77, 76, 76, 75, 75, 74, 73,
316  73, 72, 71, 71, 70, 70, 69, 68, 68, 67,
317  66, 66, 65, 65, 64, 63, 63, 62, 61, 61,
318  60, 60, 59, 58, 58, 57, 56, 56, 55, 55,
319  54, 53, 53, 52, 51, 51, 50, 50, 49, 48,
320  48, 47, 46, 46, 45, 45, 44, 43, 43, 42,
321  41, 41, 40, 40, 39, 38, 38, 37, 36, 36,
322  35, 35, 34, 33, 33, 32, 31, 31, 30, 30,
323  29, 28, 28, 27, 26, 26, 25, 25, 24, 23,
324  23, 22, 21, 21, 20, 20, 19, 18, 18, 17,
325  16, 16, 15, 15, 14, 13, 13, 12, 11, 11,
326  10, 10, 9, 8, 8, 7, 7, 6, 5, 5,
327  4
328  };
329 
331  2,
332  3, 3, 3, 4, 4, 5, 5, 6, 6, 7,
333  7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
334  12, 12, 13, 13, 14, 14, 15, 15, 16, 16,
335  17, 17, 18, 18, 19, 19, 20, 20, 21, 21,
336  22, 22, 22, 23, 23, 24, 24, 25, 25, 26,
337  26, 27, 27, 28, 28, 29, 29, 30, 30, 31,
338  31, 32, 32, 32, 33, 33, 34, 34, 35, 35,
339  36, 36, 37, 37, 38, 38, 39, 39, 40, 40,
340  41, 41, 42, 42, 42, 43, 43, 44, 44, 45,
341  45, 46, 46, 47, 47, 48, 48, 49, 49, 50,
342  50, 51, 51, 52, 52, 52, 53, 53, 54, 54,
343  55, 55, 56, 56, 57, 57, 58, 58, 59, 59,
344  60, 60, 61, 61, 62, 62, 63, 63, 63, 64,
345  64, 65, 65, 66, 66, 67, 67, 68, 68, 69,
346  69, 70, 70, 71, 71, 72, 72, 73, 73, 73,
347  74, 74, 75, 75, 76, 76, 77, 77, 78, 78,
348  79, 79, 80, 80, 81, 81, 82, 82, 82, 83,
349  83, 84, 84, 85, 85, 86, 86, 87, 87, 88,
350  88, 89, 89, 90, 90, 91, 91, 91, 92, 92,
351  93
352  };
353 
355  4,
356  4, 5, 6, 6, 7, 7, 8, 9, 9, 10,
357  11, 11, 12, 12, 13, 14, 14, 15, 16, 16,
358  17, 17, 18, 19, 19, 20, 20, 21, 22, 22,
359  23, 24, 24, 25, 25, 26, 27, 27, 28, 29,
360  29, 30, 30, 31, 32, 32, 33, 34, 34, 35,
361  35, 36, 37, 37, 38, 39, 39, 40, 40, 41,
362  42, 42, 43, 44, 44, 45, 45, 46, 47, 47,
363  48, 49, 49, 50, 50, 51, 52, 52, 53, 54,
364  54, 55, 55, 56, 57, 57, 58, 59, 59, 60,
365  60, 61, 62, 62, 63, 64, 64, 65, 65, 66,
366  67, 67, 68, 69, 69, 70, 70, 71, 72, 72,
367  73, 74, 74, 75, 75, 76, 77, 77, 78, 79,
368  79, 80, 80, 81, 82, 82, 83, 84, 84, 85,
369  85, 86, 87, 87, 88, 89, 89, 90, 90, 91,
370  92, 92, 93, 94, 94, 95, 95, 96, 97, 97,
371  98, 99, 99, 100, 100, 101, 102, 102, 103, 104,
372  104, 105, 105, 106, 107, 107, 108, 109, 109, 110,
373  110, 111, 112, 112, 113, 114, 114, 115, 115, 116,
374  117, 117, 118, 119, 119, 120, 120, 121, 122, 122,
375  123
376  };
377 
379  {192, 192},
380  {192, 192}, {192, 192}, {190, 191}, {188, 188}, {185, 186}, {183, 184}, {181, 182}, {179, 180}, {177, 178}, {175, 176},
381  {173, 174}, {171, 172}, {169, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155},
382  {152, 153}, {150, 151}, {148, 148}, {145, 146}, {143, 144}, {141, 142}, {139, 140}, {137, 138}, {135, 136}, {133, 134},
383  {131, 132}, {129, 130}, {127, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113},
384  {110, 111}, {108, 109}, {106, 106}, {103, 104}, {101, 102}, {99, 100}, {97, 98}, {95, 96}, {93, 94}, {91, 92},
385  {89, 90}, {87, 88}, {85, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71},
386  {68, 69}, {66, 67}, {64, 64}, {61, 62}, {59, 60}, {57, 58}, {55, 56}, {53, 54}, {51, 52}, {49, 50},
387  {47, 48}, {45, 46}, {43, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29},
388  {26, 27}, {24, 25}, {22, 22}, {19, 20}, {17, 18}, {15, 16}, {13, 14}, {11, 12}, {9, 10}, {7, 8},
389  {5, 6}, {3, 3}, {1, 1}, {1, 1}, {1, 1}
390  };
391 
393  {1, 1},
394  {1, 1}, {1, 1}, {2, 3}, {4, 5}, {7, 7}, {9, 10}, {11, 12}, {13, 14}, {15, 16}, {17, 18},
395  {19, 20}, {21, 22}, {23, 24}, {26, 26}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39},
396  {40, 41}, {42, 43}, {44, 45}, {47, 47}, {49, 50}, {51, 52}, {53, 54}, {55, 56}, {57, 58}, {59, 60},
397  {61, 62}, {63, 64}, {65, 66}, {68, 68}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81},
398  {82, 83}, {84, 85}, {86, 87}, {88, 89}, {91, 91}, {93, 94}, {95, 96}, {97, 98}, {99, 100}, {101, 102},
399  {103, 104}, {105, 106}, {107, 108}, {109, 110}, {112, 112}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123},
400  {124, 125}, {126, 127}, {128, 129}, {130, 131}, {133, 133}, {135, 136}, {137, 138}, {139, 140}, {141, 142}, {143, 144},
401  {145, 146}, {147, 148}, {149, 150}, {151, 152}, {154, 154}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165},
402  {166, 167}, {168, 169}, {170, 171}, {172, 173}, {175, 175}, {177, 178}, {179, 180}, {181, 182}, {183, 184}, {185, 186},
403  {187, 188}, {189, 190}, {191, 192}, {192, 192}, {192, 192}
404  };
405 
407  {192, 192},
408  {192, 192}, {192, 192}, {192, 192}, {192, 192}, {190, 191}, {189, 189}, {187, 188}, {185, 186}, {184, 184}, {182, 183},
409  {180, 181}, {179, 179}, {177, 178}, {176, 176}, {174, 175}, {172, 173}, {171, 171}, {169, 170}, {168, 168}, {166, 167},
410  {164, 165}, {163, 163}, {161, 162}, {160, 160}, {158, 159}, {156, 157}, {155, 155}, {153, 154}, {152, 152}, {150, 151},
411  {148, 149}, {147, 147}, {145, 146}, {144, 144}, {142, 143}, {140, 141}, {139, 139}, {137, 138}, {136, 136}, {134, 135},
412  {132, 133}, {131, 131}, {129, 130}, {128, 128}, {126, 127}, {124, 125}, {123, 123}, {121, 122}, {120, 120}, {118, 119},
413  {116, 117}, {115, 115}, {113, 114}, {112, 112}, {110, 111}, {108, 109}, {107, 107}, {105, 106}, {104, 104}, {102, 103},
414  {100, 101}, {99, 99}, {97, 98}, {96, 96}, {94, 95}, {92, 93}, {91, 91}, {89, 90}, {88, 88}, {86, 87},
415  {84, 85}, {83, 83}, {81, 82}, {80, 80}, {78, 79}, {76, 77}, {75, 75}, {73, 74}, {72, 72}, {70, 71},
416  {68, 69}, {67, 67}, {65, 66}, {64, 64}, {62, 63}, {60, 61}, {59, 59}, {57, 58}, {56, 56}, {54, 55},
417  {52, 53}, {51, 51}, {49, 50}, {48, 48}, {46, 47}, {44, 45}, {43, 43}, {41, 42}, {40, 40}, {38, 39},
418  {36, 37}, {35, 35}, {33, 34}, {32, 32}, {30, 31}, {28, 29}, {27, 27}, {25, 26}, {24, 24}, {22, 23},
419  {20, 21}, {19, 19}, {17, 18}, {15, 16}, {14, 14}, {12, 13}, {11, 11}, {9, 10}, {7, 8}, {6, 6},
420  {4, 5}, {3, 3}, {1, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}
421  };
422 
424  {1, 1},
425  {1, 1}, {1, 1}, {1, 1}, {1, 2}, {3, 4}, {5, 5}, {6, 7}, {8, 8}, {9, 10}, {11, 12},
426  {13, 13}, {14, 15}, {16, 16}, {17, 18}, {19, 20}, {21, 21}, {22, 23}, {24, 24}, {25, 26}, {27, 28},
427  {29, 29}, {30, 31}, {32, 32}, {33, 34}, {35, 36}, {37, 37}, {38, 39}, {40, 40}, {41, 42}, {43, 44},
428  {45, 45}, {46, 47}, {48, 48}, {49, 50}, {51, 52}, {53, 53}, {54, 55}, {56, 56}, {57, 58}, {59, 60},
429  {61, 61}, {62, 63}, {64, 64}, {65, 66}, {67, 68}, {69, 69}, {70, 71}, {72, 72}, {73, 74}, {75, 76},
430  {77, 77}, {78, 79}, {80, 80}, {81, 82}, {83, 84}, {85, 85}, {86, 87}, {88, 88}, {89, 90}, {91, 92},
431  {93, 93}, {94, 95}, {96, 96}, {97, 98}, {99, 100}, {101, 101}, {102, 103}, {104, 104}, {105, 106}, {107, 108},
432  {109, 109}, {110, 111}, {112, 112}, {113, 114}, {115, 116}, {117, 117}, {118, 119}, {120, 120}, {121, 122}, {123, 124},
433  {125, 125}, {126, 127}, {128, 128}, {129, 130}, {131, 132}, {133, 133}, {134, 135}, {136, 136}, {137, 138}, {139, 140},
434  {141, 141}, {142, 143}, {144, 144}, {145, 146}, {147, 148}, {149, 149}, {150, 151}, {152, 152}, {153, 154}, {155, 156},
435  {157, 157}, {158, 159}, {160, 160}, {161, 162}, {163, 164}, {165, 165}, {166, 167}, {168, 169}, {170, 170}, {171, 172},
436  {173, 173}, {174, 175}, {176, 177}, {178, 178}, {179, 180}, {181, 181}, {182, 183}, {184, 185}, {186, 186}, {187, 188},
437  {189, 189}, {190, 191}, {192, 192}, {192, 192}, {192, 192}, {192, 192}, {192, 192}
438  };
439 }
440 
442 {
443 }
444 
445 
447 {
448  lut_wg_eta_odd = {
449  {-2.43106, -2.43106},
450  {-2.41441, -2.41441}, {-2.39399, -2.39399}, {-2.374, -2.374}, {-2.35442, -2.35442}, {-2.33524, -2.33524},
451  {-2.31644, -2.31644}, {-2.29801, -2.29801}, {-2.27993, -2.27993}, {-2.26219, -2.26219}, {-2.24478, -2.24478},
452  {-2.22768, -2.22768}, {-2.2109, -2.2109}, {-2.19441, -2.19441}, {-2.17821, -2.17821}, {-2.16228, -2.16228},
453  {-2.14663, -2.14663}, {-2.13123, -2.13123}, {-2.11609, -2.11609}, {-2.1012, -2.1012}, {-2.08654, -2.08654},
454  {-2.07211, -2.07211}, {-2.06002, -2.06002}, {-2.04392, -2.04392}, {-2.03015, -2.03015}, {-2.01659, -2.01659},
455  {-2.00322, -2.00322}, {-1.99005, -1.99005}, {-1.97707, -1.97707}, {-1.96428, -1.96428}, {-1.95166, -1.95166},
456  {-1.93922, -1.93922}, {-1.92696, -1.92696}, {-1.91306, -1.91306}, {-1.89878, -1.89878}, {-1.88474, -1.88474},
457  {-1.87091, -1.87091}, {-1.8573, -1.8573}, {-1.8439, -1.8439}, {-1.8307, -1.8307}, {-1.81931, -1.81931},
458  {-1.80489, -1.80489}, {-1.79227, -1.79227}, {-1.77984, -1.77984}, {-1.76758, -1.76758}, {-1.7555, -1.7555},
459  {-1.74359, -1.74359}, {-1.73184, -1.73184}, {-1.72026, -1.72026}, {-1.70883, -1.70883}, {-1.69756, -1.69756},
460  {-1.68644, -1.68644}, {-1.67546, -1.67546}, {-1.66463, -1.66463}, {-1.65394, -1.65394}, {-1.64339, -1.64339}
461  };
462 
463  lut_wg_eta_even = {
464  {-2.40118, -2.40118},
465  {-2.38455, -2.38455}, {-2.36416, -2.36416}, {-2.3442, -2.3442}, {-2.32465, -2.32465}, {-2.3055, -2.3055},
466  {-2.28673, -2.28673}, {-2.26833, -2.26833}, {-2.25028, -2.25028}, {-2.23257, -2.23257}, {-2.21519, -2.21519},
467  {-2.19813, -2.19813}, {-2.18138, -2.18138}, {-2.16492, -2.16492}, {-2.14875, -2.14875}, {-2.13286, -2.13286},
468  {-2.11723, -2.11723}, {-2.10187, -2.10187}, {-2.08676, -2.08676}, {-2.0719, -2.0719}, {-2.05727, -2.05727},
469  {-2.04288, -2.04288}, {-2.03082, -2.03082}, {-2.01476, -2.01476}, {-2.00102, -2.00102}, {-1.98749, -1.98749},
470  {-1.97416, -1.97416}, {-1.96102, -1.96102}, {-1.94808, -1.94808}, {-1.93532, -1.93532}, {-1.92274, -1.92274},
471  {-1.91033, -1.91033}, {-1.8981, -1.8981}, {-1.88424, -1.88424}, {-1.87001, -1.87001}, {-1.85601, -1.85601},
472  {-1.84222, -1.84222}, {-1.82866, -1.82866}, {-1.8153, -1.8153}, {-1.80215, -1.80215}, {-1.7908, -1.7908},
473  {-1.77643, -1.77643}, {-1.76385, -1.76385}, {-1.75146, -1.75146}, {-1.73925, -1.73925}, {-1.72722, -1.72722},
474  {-1.71535, -1.71535}, {-1.70365, -1.70365}, {-1.69211, -1.69211}, {-1.68073, -1.68073}, {-1.66951, -1.66951},
475  {-1.65843, -1.65843}, {-1.64751, -1.64751}, {-1.63672, -1.63672}, {-1.62608, -1.62608}, {-1.61558, -1.61558}
476  };
477 
478  /*
479  98% acceptance cuts of the GEM-CSC bending angle in ME21
480  for various pT thresholds and for even/odd chambers
481  */
483  {3, 0.01832829, 0.01003643 },
484  {5, 0.01095490, 0.00631625 },
485  {7, 0.00786026, 0.00501017 },
486  {10, 0.00596349, 0.00414560 },
487  {15, 0.00462411, 0.00365550 },
488  {20, 0.00435298, 0.00361550 },
489  {30, 0.00465160, 0.00335700 },
490  {40, 0.00372145, 0.00366262 }
491  };
492 
493  // roll 1 through 12
495  {1.64258, 1.70821},
496  {1.70837, 1.77962},
497  {1.77979, 1.84546},
498  {1.84565, 1.91671},
499  {1.91691, 1.98263},
500  {1.98285, 2.05379},
501  {2.05402, 2.11977},
502  {2.12002, 2.19085},
503  {2.19112, 2.25688},
504  {2.25717, 2.32792},
505  {2.32823, 2.39406},
506  {2.39439, 2.46514}
507  };
508 
510  {1.64671, 1.71238},
511  {1.71254, 1.78382},
512  {1.784, 1.8497},
513  {1.84988, 1.92097},
514  {1.92117, 1.98692},
515  {1.98713, 2.05809},
516  {2.05833, 2.12409},
517  {2.12434, 2.19519},
518  {2.19546, 2.26124},
519  {2.26153, 2.33228},
520  {2.33259, 2.39844},
521  {2.39877, 2.46953}
522  };
523 
525  {1.63978, 1.70538},
526  {1.70554, 1.77677},
527  {1.77694, 1.84259},
528  {1.84277, 1.91382},
529  {1.91402, 1.97972},
530  {1.97994, 2.05086},
531  {2.0511, 2.11683},
532  {2.11708, 2.18791},
533  {2.18818, 2.25393},
534  {2.25422, 2.32495},
535  {2.32526, 2.39109},
536  {2.39142, 2.46216}
537  };
538 
540  {1.64392, 1.70956},
541  {1.70972, 1.78098},
542  {1.78115, 1.84684},
543  {1.84702, 1.91809},
544  {1.91829, 1.98402},
545  {1.98424, 2.05518},
546  {2.05541, 2.12117},
547  {2.12142, 2.19226},
548  {2.19253, 2.25829},
549  {2.25858, 2.32933},
550  {2.32964, 2.39547},
551  {2.39581, 2.46656}
552  };
553 
555  {12, 12},
556  {12, 12}, {12, 12}, {12, 12}, {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11},
557  {11, 11}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9},
558  {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8},
559  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
560  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
561  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
562  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
563  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
564  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
565  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1},
566  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
567  {1, 1}
568  };
569 
571  {12, 12},
572  {12, 12}, {12, 12}, {12, 12}, {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11},
573  {11, 11}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9},
574  {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8},
575  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
576  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
577  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
578  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
579  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
580  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
581  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1},
582  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
583  {1, 1}
584  };
585 
587  {12, 12},
588  {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {10, 10}, {10, 10},
589  {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9}, {9, 9}, {9, 9}, {9, 9},
590  {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8},
591  {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
592  {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
593  {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
594  {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
595  {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
596  {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
597  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
598  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
599  {1, 1}
600  };
601 
603  {12, 12},
604  {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {10, 10}, {10, 10},
605  {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9}, {9, 9}, {9, 9}, {9, 9},
606  {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8},
607  {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
608  {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
609  {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
610  {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
611  {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
612  {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
613  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
614  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
615  {1, 1}
616  };
617 
619  157,
620  157, 156, 156, 156, 155, 155, 154, 154, 154, 153,
621  153, 152, 152, 152, 151, 151, 150, 150, 150, 149,
622  149, 148, 148, 148, 147, 147, 146, 146, 146, 145,
623  145, 144, 144, 144, 143, 143, 142, 142, 142, 141,
624  141, 140, 140, 140, 139, 139, 138, 138, 138, 137,
625  137, 136, 136, 135, 135, 135, 134, 134, 133, 133,
626  133, 132, 132, 131, 131, 131, 130, 130, 129, 129,
627  129, 128, 128, 127, 127, 127, 126, 126, 125, 125,
628  125, 124, 124, 123, 123, 122, 122, 122, 121, 121,
629  120, 120, 120, 119, 119, 118, 118, 118, 117, 117,
630  116, 116, 116, 115, 115, 114, 114, 113, 113, 113,
631  112, 112, 111, 111, 111, 110, 110, 109, 109, 109,
632  108, 108, 107, 107, 107, 106, 106, 105, 105, 104,
633  104, 104, 103, 103, 102, 102, 102, 101, 101, 100,
634  100, 100, 99, 99, 98, 98, 97, 97, 97, 96,
635  96, 95, 95, 95, 94, 94, 93, 93, 93, 92,
636  92, 91, 91, 90, 90, 90, 89, 89, 88, 88,
637  88, 87, 87, 86, 86, 86, 85, 85, 84, 84,
638  83, 83, 83, 82, 82, 81, 81, 81, 80, 80,
639  79, 79, 79, 78, 78, 77, 77, 76, 76, 76,
640  75, 75, 74, 74, 74, 73, 73, 72, 72, 72,
641  71, 71, 70, 70, 69, 69, 69, 68, 68, 67,
642  67, 67, 66, 66, 65, 65, 65, 64, 64, 63,
643  63, 62, 62, 62, 61, 61, 60, 60, 60, 59,
644  59, 58, 58, 58, 57, 57, 56, 56, 55, 55,
645  55, 54, 54, 53, 53, 53, 52, 52, 51, 51,
646  51, 50, 50, 49, 49, 48, 48, 48, 47, 47,
647  46, 46, 46, 45, 45, 44, 44, 44, 43, 43,
648  42, 42, 42, 41, 41, 40, 40, 39, 39, 39,
649  38, 38, 37, 37, 37, 36, 36, 35, 35, 35,
650  34, 34, 33, 33, 33, 32, 32, 31, 31, 31,
651  30, 30, 29, 29, 28, 28, 28, 27, 27, 26,
652  26, 26, 25, 25, 24, 24, 24, 23, 23, 22,
653  22, 22, 21, 21, 20, 20, 20, 19, 19, 18,
654  18, 18, 17, 17, 16, 16, 16, 15, 15, 14,
655  14, 14, 13, 13, 12, 12, 11, 11, 11, 10,
656  10, 9, 9, 9, 8, 8, 7, 7, 7, 6,
657  6, 5, 5, 5, 4, 4, 3, 3, 3, 2,
658  2, 1, 1
659  };
660 
662  1,
663  1, 2, 2, 2, 3, 3, 4, 4, 4, 5,
664  5, 6, 6, 6, 7, 7, 8, 8, 8, 9,
665  9, 10, 10, 10, 11, 11, 12, 12, 12, 13,
666  13, 14, 14, 14, 15, 15, 16, 16, 17, 17,
667  17, 18, 18, 19, 19, 19, 20, 20, 21, 21,
668  21, 22, 22, 23, 23, 23, 24, 24, 25, 25,
669  25, 26, 26, 27, 27, 27, 28, 28, 29, 29,
670  29, 30, 30, 31, 31, 32, 32, 32, 33, 33,
671  34, 34, 34, 35, 35, 36, 36, 36, 37, 37,
672  38, 38, 38, 39, 39, 40, 40, 40, 41, 41,
673  42, 42, 43, 43, 43, 44, 44, 45, 45, 45,
674  46, 46, 47, 47, 47, 48, 48, 49, 49, 50,
675  50, 50, 51, 51, 52, 52, 52, 53, 53, 54,
676  54, 54, 55, 55, 56, 56, 56, 57, 57, 58,
677  58, 59, 59, 59, 60, 60, 61, 61, 61, 62,
678  62, 63, 63, 63, 64, 64, 65, 65, 66, 66,
679  66, 67, 67, 68, 68, 68, 69, 69, 70, 70,
680  70, 71, 71, 72, 72, 73, 73, 73, 74, 74,
681  75, 75, 75, 76, 76, 77, 77, 77, 78, 78,
682  79, 79, 80, 80, 80, 81, 81, 82, 82, 82,
683  83, 83, 84, 84, 84, 85, 85, 86, 86, 87,
684  87, 87, 88, 88, 89, 89, 89, 90, 90, 91,
685  91, 92, 92, 92, 93, 93, 94, 94, 94, 95,
686  95, 96, 96, 96, 97, 97, 98, 98, 98, 99,
687  99, 100, 100, 101, 101, 101, 102, 102, 103, 103,
688  103, 104, 104, 105, 105, 105, 106, 106, 107, 107,
689  108, 108, 108, 109, 109, 110, 110, 110, 111, 111,
690  112, 112, 112, 113, 113, 114, 114, 115, 115, 115,
691  116, 116, 117, 117, 117, 118, 118, 119, 119, 119,
692  120, 120, 121, 121, 121, 122, 122, 123, 123, 124,
693  124, 124, 125, 125, 126, 126, 126, 127, 127, 128,
694  128, 128, 129, 129, 130, 130, 130, 131, 131, 132,
695  132, 132, 133, 133, 134, 134, 134, 135, 135, 136,
696  136, 137, 137, 137, 138, 138, 139, 139, 139, 140,
697  140, 141, 141, 141, 142, 142, 143, 143, 143, 144,
698  144, 145, 145, 145, 146, 146, 147, 147, 147, 148,
699  148, 149, 149, 149, 150, 150, 151, 151, 151, 152,
700  152, 153, 153, 153, 154, 154, 155, 155, 155, 156,
701  156, 157, 157
702  };
703 
705  {384, 384},
706  {384, 384}, {381, 382}, {378, 380}, {376, 377}, {373, 375}, {371, 372}, {368, 370}, {366, 367}, {363, 365}, {361, 362},
707  {358, 360}, {356, 357}, {354, 355}, {351, 353}, {349, 350}, {346, 348}, {344, 345}, {341, 343}, {339, 340}, {336, 338},
708  {334, 335}, {331, 333}, {329, 330}, {326, 328}, {324, 325}, {321, 323}, {319, 320}, {316, 318}, {314, 315}, {312, 313},
709  {309, 311}, {307, 308}, {304, 306}, {302, 303}, {299, 301}, {297, 298}, {294, 296}, {292, 293}, {289, 291}, {287, 288},
710  {285, 286}, {282, 284}, {280, 281}, {277, 279}, {275, 276}, {272, 274}, {270, 271}, {267, 269}, {265, 266}, {263, 264},
711  {260, 262}, {258, 259}, {255, 257}, {253, 254}, {250, 252}, {248, 249}, {246, 247}, {243, 245}, {241, 242}, {238, 240},
712  {236, 237}, {233, 235}, {231, 232}, {229, 230}, {226, 228}, {224, 225}, {221, 223}, {219, 220}, {216, 218}, {214, 215},
713  {212, 213}, {209, 211}, {207, 208}, {204, 206}, {202, 203}, {199, 201}, {197, 198}, {195, 196}, {192, 194}, {190, 191},
714  {187, 189}, {185, 186}, {182, 184}, {180, 181}, {178, 179}, {175, 177}, {173, 174}, {170, 172}, {168, 169}, {165, 167},
715  {163, 164}, {161, 162}, {158, 160}, {156, 157}, {153, 155}, {151, 152}, {148, 150}, {146, 147}, {144, 145}, {141, 143},
716  {139, 140}, {136, 138}, {134, 135}, {131, 133}, {129, 130}, {127, 128}, {124, 126}, {122, 123}, {119, 121}, {117, 118},
717  {114, 116}, {112, 113}, {109, 111}, {107, 108}, {105, 106}, {102, 104}, {100, 101}, {97, 99}, {95, 96}, {92, 94},
718  {90, 91}, {87, 89}, {85, 86}, {83, 84}, {80, 82}, {78, 79}, {75, 77}, {73, 74}, {70, 72}, {68, 69},
719  {65, 67}, {63, 64}, {60, 62}, {58, 59}, {55, 57}, {53, 54}, {51, 52}, {48, 50}, {46, 47}, {43, 45},
720  {41, 42}, {38, 40}, {36, 37}, {33, 35}, {31, 32}, {28, 30}, {26, 27}, {23, 25}, {21, 22}, {18, 20},
721  {16, 17}, {13, 15}, {11, 12}, {8, 10}, {6, 7}, {3, 5}, {1, 2}, {1, 1}, {1, 1}
722  };
723 
725  {1, 2},
726  {1, 2}, {3, 5}, {6, 7}, {8, 10}, {11, 12}, {13, 15}, {16, 17}, {18, 20}, {21, 22}, {23, 25},
727  {26, 27}, {28, 30}, {31, 32}, {33, 35}, {36, 37}, {38, 39}, {40, 42}, {43, 44}, {45, 47}, {48, 49},
728  {50, 52}, {53, 54}, {55, 57}, {58, 59}, {60, 62}, {63, 64}, {65, 67}, {68, 69}, {70, 72}, {73, 74},
729  {75, 76}, {77, 79}, {80, 81}, {82, 84}, {85, 86}, {87, 89}, {90, 91}, {92, 94}, {95, 96}, {97, 99},
730  {100, 101}, {102, 103}, {104, 106}, {107, 108}, {109, 111}, {112, 113}, {114, 116}, {117, 118}, {119, 120}, {121, 123},
731  {124, 125}, {126, 128}, {129, 130}, {131, 133}, {134, 135}, {136, 138}, {139, 140}, {141, 142}, {143, 145}, {146, 147},
732  {148, 150}, {151, 152}, {153, 155}, {156, 157}, {158, 159}, {160, 162}, {163, 164}, {165, 167}, {168, 169}, {170, 172},
733  {173, 174}, {175, 176}, {177, 179}, {180, 181}, {182, 184}, {185, 186}, {187, 189}, {190, 191}, {192, 193}, {194, 196},
734  {197, 198}, {199, 201}, {202, 203}, {204, 206}, {207, 208}, {209, 210}, {211, 213}, {214, 215}, {216, 218}, {219, 220},
735  {221, 222}, {223, 225}, {226, 227}, {228, 230}, {231, 232}, {233, 235}, {236, 237}, {238, 240}, {241, 242}, {243, 244},
736  {245, 247}, {248, 249}, {250, 252}, {253, 254}, {255, 257}, {258, 259}, {260, 261}, {262, 264}, {265, 266}, {267, 269},
737  {270, 271}, {272, 274}, {275, 276}, {277, 278}, {279, 281}, {282, 283}, {284, 286}, {287, 288}, {289, 291}, {292, 293},
738  {294, 296}, {297, 298}, {299, 300}, {301, 303}, {304, 305}, {306, 308}, {309, 310}, {311, 313}, {314, 315}, {316, 318},
739  {319, 320}, {321, 323}, {324, 325}, {326, 328}, {329, 330}, {331, 332}, {333, 335}, {336, 337}, {338, 340}, {341, 342},
740  {343, 345}, {346, 347}, {348, 350}, {351, 352}, {353, 355}, {356, 357}, {358, 360}, {361, 362}, {363, 365}, {366, 367},
741  {368, 370}, {371, 372}, {373, 375}, {376, 377}, {378, 380}, {381, 382}, {383, 384}, {384, 384}, {384, 384}
742  };
743 }
744 
745 
747 {
748 }
std::vector< int > get_gem_pad_to_csc_hs(Parity par, enum CSCPart) const override
std::vector< int > get_gem_pad_to_csc_hs(Parity par, enum CSCPart) const override
std::vector< std::pair< int, int > > get_csc_hs_to_gem_pad(Parity par, enum CSCPart) const override
bool isValid() const
check ALCT validity (1 - valid ALCT)
Definition: CSCALCTDigi.h:30
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l1
std::vector< int > gem_pad_to_csc_hs_me1b_even
std::vector< int > gem_roll_to_csc_wg_odd_l1
std::vector< int > get_gem_roll_to_csc_wg(Parity par, int layer=1) const
std::vector< std::vector< double > > lut_wg_vs_hs_me1ag
std::vector< int > gem_pad_to_csc_hs_even
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l1
std::vector< int > gem_pad_to_csc_hs_me1b_odd
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1b_even
std::vector< int > gem_pad_to_csc_hs_me1a_odd
std::vector< int > gem_pad_to_csc_hs_me1a_even
std::vector< int > gem_roll_to_csc_wg_even_l1
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l2
std::vector< int > gem_roll_to_csc_wg_even_l2
bool isValid() const
check CLCT validity (1 - valid CLCT)
Definition: CSCCLCTDigi.h:30
std::vector< std::vector< double > > lut_wg_vs_hs_me1a
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_even
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l1
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l2
std::vector< std::vector< double > > lut_wg_eta_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l1
std::vector< std::pair< int, int > > get_csc_hs_to_gem_pad(Parity par, enum CSCPart) const override
std::vector< int > gem_pad_to_csc_hs_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l2
std::vector< int > gem_roll_to_csc_wg_odd_l2
std::vector< std::vector< double > > lut_wg_vs_hs_me1b
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l2
std::vector< std::vector< double > > lut_wg_eta_even
double a
Definition: hdecay.h:121
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1a_odd
std::vector< std::vector< double > > lut_pt_vs_dphi_gemcsc
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1a_even
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1b_odd
int getKeyStrip() const
Definition: CSCCLCTDigi.h:89
int getKeyWG() const
return key wire group
Definition: CSCALCTDigi.h:57
std::vector< std::pair< int, int > > get_csc_wg_to_gem_roll(Parity par, int layer=1) const
bool doesALCTCrossCLCT(const CSCALCTDigi &a, const CSCCLCTDigi &c, int theEndcap, bool gangedME1a=false) const