CMS 3D CMS Logo

G4MonopoleEquation.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
28 //
29 // $Id: G4MonopoleEquation.cc 69705 2013-05-13 09:09:52Z gcosmo $
30 //
31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
33 //
34 //
35 // class G4MonopoleEquation
36 //
37 // Class description:
38 //
39 //
40 // This is the standard right-hand side for equation of motion.
41 //
42 // The only case another is required is when using a moving reference
43 // frame ... or extending the class to include additional Forces,
44 // eg an electric field
45 //
46 // 10.11.98 V.Grichine
47 //
48 // 30.04.10 S.Burdin (modified to use for the monopole trajectories).
49 //
50 // 15.06.10 B.Bozsogi (replaced the hardcoded magnetic charge with
51 // the one passed by G4MonopoleTransportation)
52 // +workaround to pass the electric charge.
53 //
54 // 12.07.10 S.Burdin (added equations for the electric charges)
55 // -------------------------------------------------------------------
56 
57 #include "SimG4Core/MagneticField/interface/G4MonopoleEquation.hh"
58 #include "globals.hh"
59 #include "G4PhysicalConstants.hh"
60 #include "G4SystemOfUnits.hh"
61 #include <iomanip>
62 
63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
64 
65 G4MonopoleEquation::G4MonopoleEquation(G4ElectroMagneticField *emField )
66  : G4EquationOfMotion( emField )
67 {}
68 
69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
70 
71 G4MonopoleEquation::~G4MonopoleEquation()
72 {}
73 
74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
75 
76 void
77 G4MonopoleEquation::SetChargeMomentumMass( G4ChargeState particleChargeState,
78  G4double , // momentum,
79  G4double particleMass)
80 {
81  G4double particleMagneticCharge= particleChargeState.MagneticCharge();
82  G4double particleElectricCharge= particleChargeState.GetCharge();
83 
84  // fElCharge = particleElectricCharge;
85  fElCharge =eplus* particleElectricCharge*c_light;
86 
87  fMagCharge = eplus*particleMagneticCharge*c_light ;
88 
89  // G4cout << " G4MonopoleEquation: ElectricCharge=" << particleElectricCharge
90  // << "; MagneticCharge=" << particleMagneticCharge
91  // << G4endl;
92 
93  fMassCof = particleMass*particleMass ;
94 }
95 
96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
97 
98 void
99 G4MonopoleEquation::EvaluateRhsGivenB(const G4double y[],
100  const G4double Field[],
101  G4double dydx[] ) const
102 {
103  // Components of y:
104  // 0-2 dr/ds,
105  // 3-5 dp/ds - momentum derivatives
106 
107  G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
108 
109  G4double Energy = std::sqrt( pSquared + fMassCof );
110 
111  G4double pModuleInverse = 1.0/std::sqrt(pSquared);
112 
113  G4double inverse_velocity = Energy * pModuleInverse / c_light;
114 
115  G4double cofEl = fElCharge * pModuleInverse ;
116  G4double cofMag = fMagCharge * Energy * pModuleInverse;
117 
118 
119  dydx[0] = y[3]*pModuleInverse ;
120  dydx[1] = y[4]*pModuleInverse ;
121  dydx[2] = y[5]*pModuleInverse ;
122 
123  // G4double magCharge = twopi * hbar_Planck / (eplus * mu0);
124  // magnetic charge in SI units A*m convention
125  // see http://en.wikipedia.org/wiki/Magnetic_monopole
126  // G4cout << "Magnetic charge: " << magCharge << G4endl;
127  // dp/ds = dp/dt * dt/ds = dp/dt / v = Force / velocity
128  // dydx[3] = fMagCharge * Field[0] * inverse_velocity * c_light;
129  // multiplied by c_light to convert to MeV/mm
130  // dydx[4] = fMagCharge * Field[1] * inverse_velocity * c_light;
131  // dydx[5] = fMagCharge * Field[2] * inverse_velocity * c_light;
132 
133  dydx[3] = cofMag * Field[0] + cofEl * (y[4]*Field[2] - y[5]*Field[1]);
134  dydx[4] = cofMag * Field[1] + cofEl * (y[5]*Field[0] - y[3]*Field[2]);
135  dydx[5] = cofMag * Field[2] + cofEl * (y[3]*Field[1] - y[4]*Field[0]);
136 
137  // G4cout << std::setprecision(5)<< "E=" << Energy
138  // << "; p="<< 1/pModuleInverse
139  // << "; mC="<< magCharge
140  // <<"; x=" << y[0]
141  // <<"; y=" << y[1]
142  // <<"; z=" << y[2]
143  // <<"; dydx[3]=" << dydx[3]
144  // <<"; dydx[4]=" << dydx[4]
145  // <<"; dydx[5]=" << dydx[5]
146  // << G4endl;
147 
148  dydx[6] = 0.;//not used
149 
150  // Lab Time of flight
151  dydx[7] = inverse_velocity;
152  return;
153 }
154 
155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
T sqrt(T t)
Definition: SSEVec.h:18