51 #include "TGeoManager.h" 53 #include "TGeoMatrix.h" 60 #include "TEveVector.h" 61 #include "TEveTrans.h" 66 typedef std::map< const float*, TGeoVolume*> CaloVolMap;
84 void AddLeafNode(TGeoVolume* mother, TGeoVolume* daughter,
const char*
name, TGeoMatrix* mtx )
86 int n = mother->GetNdaughters();
87 mother->AddNode(daughter, 1, mtx);
88 mother->GetNode(n)->SetName(name);
92 TGeoCombiTrans* createPlacement(
const GeomDet *det )
99 TGeoTranslation trans( posx, posy, posz );
106 const Double_t
matrix[9] = { detRot.
xx(), detRot.
yx(), detRot.
zx(),
107 detRot.
xy(), detRot.
yy(), detRot.
zy(),
108 detRot.
xz(), detRot.
yz(), detRot.
zz()
110 rotation.SetMatrix( matrix );
112 return new TGeoCombiTrans( trans, rotation );
122 TGeoVolume*
res =
nullptr;
123 if (mother->GetNdaughters()) {
124 TGeoNode*
n = mother->FindNode(Form(
"%s_%d_1", prefix,
id));
125 if ( n ) res = n->GetVolume();
129 res =
new TGeoVolumeAssembly( Form(
"%s_%d", prefix,
id ));
131 mother->AddNode(res, 1);
139 TGeoVolume*
res =
nullptr;
140 if (mother->GetNdaughters()) {
141 TGeoNode*
n = mother->FindNode(Form(
"%s_1",prefix));
142 if ( n ) res = n->GetVolume();
147 res =
new TGeoVolumeAssembly(prefix);
149 mother->AddNode(res, 1);
165 Blue0 = 13, Blue1 = 24, Blue2 = 6,
166 Yellow0 = 3, Yellow1 = 16,
168 Red = 29, Orange0 = 79, Orange1 = 14,
179 std::map<ERecoDet, TGeoMedium*>::iterator it =
m_recoMedium.find(det);
192 color = GMCol::Green;
202 color = GMCol::Blue2;
212 color = GMCol::Yellow1;
222 color = GMCol::Yellow0;
228 color = GMCol::Blue2;
232 color = GMCol::Orange1;
236 color = GMCol::Green;
240 color = GMCol::Blue2;
244 color = GMCol::Blue1;
247 printf(
"invalid medium id \n");
251 TGeoMaterial* mat =
new TGeoMaterial(
name.c_str(), 0, 0, 0);
254 mat->SetFillStyle(3000);
265 std::shared_ptr<FWTGeoRecoGeometry>
278 TGeoManager*
geom =
new TGeoManager(
"cmsGeo",
"CMS Detector" );
279 if(
nullptr == gGeoIdentity )
281 gGeoIdentity =
new TGeoIdentity(
"Identity" );
287 TGeoMaterial *vacuum =
new TGeoMaterial(
"Vacuum", 0 ,0 ,0 );
290 TGeoVolume *top = geom->MakeBox(
"CMS",
m_dummyMedium, 270., 270., 120. );
294 return std::shared_ptr<FWTGeoRecoGeometry>();
296 geom->SetTopVolume( top );
298 top->SetVisibility( kFALSE );
299 top->SetLineColor( kBlue );
343 geom->CloseGeometry();
345 geom->DefaultColors();
347 geom->CloseGeometry();
356 TGeoShape* shape =
nullptr;
363 std::array< const float, 4 >
const & par = b2->
parameters ();
366 float hBottomEdge = par [0];
367 float hTopEdge = par [1];
368 float thickness = par [2];
369 float apothem = par [3];
373 << hBottomEdge <<
"_" 382 if(
nullptr == shape )
384 shape =
new TGeoTrap(
401 if( dynamic_cast<const RectangularPlaneBounds *> (b) !=
nullptr )
418 if(
nullptr == shape )
420 shape =
new TGeoBBox( name.c_str(), width / 2., length / 2., thickness / 2. );
435 std::map<TGeoShape*, TGeoVolume*>::iterator vIt =
m_shapeToVolume.find(solid);
439 TGeoVolume* volume =
new TGeoVolume( name.c_str(),solid,
GetMedium(mid));
464 DetId detid = it->geographicalId();
469 std::string name = Form(
"PXB Ly:%d, Md:%d Ld:%d ", layer, module, ladder );
475 AddLeafNode( holder, child, name.c_str(), createPlacement( it ));
486 DetId detid = it->geographicalId();
492 std::string name = Form(
"PXF D:%d, B:%d, P:%d, S:%d", disk, blade, panel, side );
500 AddLeafNode( holder, child, name.c_str(), createPlacement( it ));
511 DetId detid = it->geographicalId();
524 AddLeafNode( holder, child, name.c_str(), createPlacement( it ));
535 DetId detid = it->geographicalId();
548 AddLeafNode( holder, child, name.c_str(), createPlacement( it ));
559 DetId detid = it->geographicalId();
572 AddLeafNode( holder, child, name.c_str(), createPlacement( it ));
583 DetId detid = it->geographicalId();
597 AddLeafNode( holder, child, name.c_str(), createPlacement( it ));
620 for(
auto it = dtChamberGeom.begin(),
621 end = dtChamberGeom.end();
624 if(
auto chamber = dynamic_cast< const DTChamber *>(*it))
636 AddLeafNode(holder, child, name.c_str(), createPlacement(
chamber));
645 for(
auto it = dtSuperLayerGeom.begin(),
646 end = dtSuperLayerGeom.end();
649 if(
auto * superlayer = dynamic_cast<const DTSuperLayer*>(*it))
662 AddLeafNode(holder, child, name.c_str(), createPlacement( superlayer));
670 for(
auto it = dtLayerGeom.begin(),
671 end = dtLayerGeom.end();
674 if(
auto layer = dynamic_cast<const DTLayer*>(*it))
690 AddLeafNode(holder, child, name.c_str(), createPlacement( layer));
701 throw cms::Exception(
"FatalError" ) <<
"Cannnot find CSCGeometry\n";
708 for(
auto it = cscGeom.begin(), itEnd = cscGeom.end(); it != itEnd; ++it )
710 unsigned int rawid = (*it)->geographicalId();
716 TGeoVolume*
child =
nullptr;
718 if(
auto chamber = dynamic_cast<const CSCChamber*>(*it))
720 else if(
auto * layer = dynamic_cast<const CSCLayer*>(*it))
732 AddLeafNode(holder, child, name.c_str(), createPlacement(*it));
766 TGeoVolume* holder =
GetDaughter(assembly,
"SuperChamber Region",
kMuonGEM , detid.region());
771 AddLeafNode(holder, child, name.c_str(), createPlacement(*it));
798 AddLeafNode(holder, child, name.c_str(), createPlacement(*it));
803 edm::LogInfo(
"FWRecoGeometry") <<
"failed to produce GEM geometry " << exception.
what() << std::endl;
819 for(
auto it = rpcGeom->
rolls().begin(),
840 AddLeafNode(holder, child, name.c_str(), createPlacement(*it));
860 unsigned int rawid = roll->geographicalId().rawId();
872 AddLeafNode(holder, child, name.c_str(), createPlacement(roll));
880 edm::LogInfo(
"FWRecoGeometry") <<
"failed to produce ME0 geometry " << exception.
what() << std::endl;
898 CaloVolMap caloShapeMapP;
899 CaloVolMap caloShapeMapN;
900 for( std::vector<DetId>::const_iterator it = vid.begin(),
end = vid.end(); it !=
end; ++it)
907 if (!cell) { printf (
"HB not oblique !!!\n");
continue; }
909 TGeoVolume* volume =
nullptr;
910 CaloVolMap& caloShapeMap = (cell->
etaPos() > 0) ? caloShapeMapP : caloShapeMapN;
911 CaloVolMap::iterator volIt = caloShapeMap.find(cell->
param());
912 if (volIt == caloShapeMap.end())
918 HepGeom::Vector3D<float> lCenter;
919 for(
int c = 0;
c < 8; ++
c)
923 static const int arr[] = { 1, 0, 3, 2, 5, 4, 7, 6 };
925 for (
int c = 0;
c < 8; ++
c) {
927 points[
c*2 + 0 ] = -(lc[arr[
c]].
z() - lCenter.z());
929 points[
c*2 + 0 ] = (lc[arr[
c]].z() - lCenter.z());
930 points[
c*2 + 1 ] = (lc[arr[
c]].y() - lCenter.y());
934 float dz = (lc[4].x() -lc[0].x()) * 0.5;
935 TGeoShape* solid =
new TGeoArb8(dz, &points[0]);
936 volume =
new TGeoVolume(
"hcal oblique prism", solid,
GetMedium(
kHCal));
937 caloShapeMap[cell->
param()] = volume;
940 volume = volIt->second;
943 HepGeom::Vector3D<float> gCenter;
945 for (
int c = 0;
c < 8; ++
c)
946 gCenter += HepGeom::Vector3D<float>(gc[
c].
x(), gc[
c].
y(), gc[
c].
z());
949 TGeoTranslation gtr(gCenter.x(), gCenter.y(), gCenter.z());
954 rotPhi.SetAngles(0, -cell->
phiPos()*TMath::RadToDeg(), 0);
955 rot.MultiplyBy(&rotPhi);
959 std::stringstream nname;
961 AddLeafNode(holder, volume, nname.str().c_str(),
new TGeoCombiTrans(gtr, rot));
972 CaloVolMap caloShapeMapP;
973 CaloVolMap caloShapeMapN;
980 for( std::vector<DetId>::const_iterator it = vid.begin(),
end = vid.end(); it !=
end; ++it)
986 if (!cell) { printf (
"EC not oblique \n");
continue; }
988 TGeoVolume* volume =
nullptr;
989 CaloVolMap& caloShapeMap = (cell->
etaPos() > 0) ? caloShapeMapP : caloShapeMapN;
990 CaloVolMap::iterator volIt = caloShapeMap.find(cell->
param());
991 if ( volIt == caloShapeMap.end())
996 HepGeom::Vector3D<float> lCenter;
997 for(
int c = 0;
c < 8; ++
c)
1005 static const int arrP[] = { 3, 2, 1, 0, 7, 6, 5, 4 };
1006 static const int arrN[] = { 7, 6, 5, 4 ,3, 2, 1, 0};
1007 const int* arr = (detid.
ieta() > 0) ? &arrP[0] : &arrN[0];
1010 for (
int c = 0;
c < 8; ++
c) {
1011 points[
c*2 + 0 ] = lc[arr[
c]].x() - lCenter.x();
1012 points[
c*2 + 1 ] = lc[arr[
c]].y() - lCenter.y();
1015 float dz = (lc[4].z() -lc[0].z()) * 0.5;
1016 TGeoShape* solid =
new TGeoArb8(dz, &points[0]);
1017 volume =
new TGeoVolume(
"ecal oblique prism", solid,
GetMedium(
kHCal));
1018 caloShapeMap[cell->
param()] = volume;
1022 volume = volIt->second;
1026 HepGeom::Vector3D<float> gCenter;
1028 for (
int c = 0;
c < 8; ++
c) {
1029 gCenter += HepGeom::Vector3D<float>(gc[
c].x(), gc[
c].y(), gc[
c].z());
1034 TGeoTranslation gtr(gCenter.x(), gCenter.y(), gCenter.z());
1036 rot.SetAngles(cell->
phiPos()*TMath::RadToDeg(), 0, 0);
1040 std::stringstream nname;
1042 AddLeafNode(holder, volume, nname.str().c_str(),
new TGeoCombiTrans(gtr, rot));
1051 CaloVolMap caloShapeMapP;
1052 CaloVolMap caloShapeMapN;
1059 for( std::vector<DetId>::const_iterator it = vid.begin(),
end = vid.end(); it !=
end; ++it)
1065 if (!cell) { printf (
"EC not oblique \n");
continue; }
1067 TGeoVolume* volume =
nullptr;
1068 CaloVolMap& caloShapeMap = (cell->
etaPos() > 0) ? caloShapeMapP : caloShapeMapN;
1069 CaloVolMap::iterator volIt = caloShapeMap.find(cell->
param());
1070 if ( volIt == caloShapeMap.end())
1075 HepGeom::Vector3D<float> lCenter;
1076 for(
int c = 0;
c < 8; ++
c)
1079 static const int arrP[] = { 3, 2, 1, 0, 7, 6, 5, 4 };
1080 static const int arrN[] = { 7, 6, 5, 4 ,3, 2, 1, 0};
1081 const int* arr = (detid.
ieta() > 0) ? &arrP[0] : &arrN[0];
1084 for (
int c = 0;
c < 8; ++
c) {
1085 points[
c*2 + 0 ] = lc[arr[
c]].x() - lCenter.x();
1086 points[
c*2 + 1 ] = lc[arr[
c]].y() - lCenter.y();
1089 float dz = (lc[4].z() -lc[0].z()) * 0.5;
1090 TGeoShape* solid =
new TGeoArb8(dz, &points[0]);
1091 volume =
new TGeoVolume(
"ecal oblique prism", solid,
GetMedium(
kHCal));
1092 caloShapeMap[cell->
param()] = volume;
1095 volume = volIt->second;
1097 HepGeom::Vector3D<float> gCenter;
1099 for (
int c = 0;
c < 8; ++
c) {
1100 gCenter += HepGeom::Vector3D<float>(gc[
c].x(), gc[
c].y(), gc[
c].z());
1104 TGeoTranslation gtr(gCenter.x(), gCenter.y(), gCenter.z());
1106 rot.SetAngles(cell->
phiPos()*TMath::RadToDeg(), 0, 0);
1110 std::stringstream nname;
1112 AddLeafNode(holder, volume, nname.str().c_str(),
new TGeoCombiTrans(gtr, rot));
1119 CaloVolMap caloShapeMapP;
1120 CaloVolMap caloShapeMapN;
1127 for( std::vector<DetId>::const_iterator it = vid.begin(),
end = vid.end(); it !=
end; ++it)
1133 if (!cell) { printf (
"EC not Z prism \n");
continue; }
1135 TGeoVolume* volume =
nullptr;
1136 CaloVolMap& caloShapeMap = (cell->
etaPos() > 0) ? caloShapeMapP : caloShapeMapN;
1137 CaloVolMap::iterator volIt = caloShapeMap.find(cell->
param());
1138 if ( volIt == caloShapeMap.end())
1143 HepGeom::Vector3D<float> lCenter;
1144 for(
int c = 0;
c < 8; ++
c)
1147 static const int arrP[] = { 3, 2, 1, 0, 7, 6, 5, 4 };
1148 static const int arrN[] = { 7, 6, 5, 4 ,3, 2, 1, 0};
1149 const int* arr = (detid.
ieta() > 0) ? &arrP[0] : &arrN[0];
1152 for (
int c = 0;
c < 8; ++
c) {
1153 points[
c*2 + 0 ] = lc[arr[
c]].x() - lCenter.x();
1154 points[
c*2 + 1 ] = lc[arr[
c]].y() - lCenter.y();
1157 float dz = (lc[4].z() -lc[0].z()) * 0.5;
1158 TGeoShape* solid =
new TGeoArb8(dz, &points[0]);
1159 volume =
new TGeoVolume(
"ecal oblique prism", solid,
GetMedium(
kHCal));
1160 caloShapeMap[cell->
param()] = volume;
1163 volume = volIt->second;
1165 HepGeom::Vector3D<float> gCenter;
1167 for (
int c = 0;
c < 8; ++
c) {
1168 gCenter += HepGeom::Vector3D<float>(gc[
c].x(), gc[
c].y(), gc[
c].z());
1172 TGeoTranslation gtr(gCenter.x(), gCenter.y(), gCenter.z());
1174 rot.SetAngles(cell->
phiPos()*TMath::RadToDeg(), 0, 0);
1178 std::stringstream nname;
1180 AddLeafNode(holder, volume, nname.str().c_str(),
new TGeoCombiTrans(gtr, rot));
1187 CaloVolMap caloShapeMapP;
1188 CaloVolMap caloShapeMapN;
1194 for( std::vector<DetId>::const_iterator it = vid.begin(),
end = vid.end(); it !=
end; ++it)
1199 if (!cell) { printf (
"EC not oblique \n");
continue; }
1200 TGeoVolume* volume =
nullptr;
1201 CaloVolMap& caloShapeMap = (cell->
etaPos() > 0) ? caloShapeMapP : caloShapeMapN;
1202 CaloVolMap::iterator volIt = caloShapeMap.find(cell->
param());
1203 if ( volIt == caloShapeMap.end())
1208 HepGeom::Vector3D<float> lCenter;
1209 for(
int c = 0;
c < 8; ++
c)
1213 static const int arrP[] = { 3, 2, 1, 0, 7, 6, 5, 4 };
1214 static const int arrN[] = { 7, 6, 5, 4 ,3, 2, 1, 0};
1215 const int* arr = (detid.
ieta() > 0) ? &arrP[0] : &arrN[0];
1218 for (
int c = 0;
c < 8; ++
c) {
1219 points[
c*2 + 0 ] = lc[arr[
c]].x() - lCenter.x();
1220 points[
c*2 + 1 ] = lc[arr[
c]].y() - lCenter.y();
1223 float dz = (lc[4].z() -lc[0].z()) * 0.5;
1224 TGeoShape* solid =
new TGeoArb8(dz, &points[0]);
1226 caloShapeMap[cell->
param()] = volume;
1229 volume = volIt->second;
1232 HepGeom::Vector3D<float> gCenter;
1234 for (
int c = 0;
c < 8; ++
c) {
1235 gCenter += HepGeom::Vector3D<float>(gc[
c].x(), gc[
c].y(), gc[
c].z());
1239 TGeoTranslation gtr(gCenter.x(), gCenter.y(), gCenter.z());
1241 rot.SetAngles(cell->
phiPos()*TMath::RadToDeg(), 0, 0);
1245 std::stringstream nname;
1247 AddLeafNode(holder, volume, nname.str().c_str(),
new TGeoCombiTrans(gtr, rot));
1257 for (
int i = 0;
i < 8; ++
i)
1258 gCenter += TEveVector(gc[
i].
x(), gc[
i].
y(), gc[
i].
z());
1261 TEveVector tgCenter;
1262 for (
int i = 4;
i < 8; ++
i)
1263 tgCenter += TEveVector(gc[
i].
x(), gc[
i].
y(), gc[
i].
z());
1267 TEveVector axis = tgCenter - gCenter;
1272 tr.GetBaseVec(1, v1t);
1275 TEveVector v1(v1t.x(), v1t.y(), v1t.z());
1276 double dot13 = axis.Dot(v1);
1277 TEveVector gd = axis;
1282 TMath::Cross(v1.Arr(), axis.Arr(), v2.Arr());
1283 TMath::Cross(axis.Arr(), v1.Arr(), v2.Arr());
1286 tr.SetBaseVec(1, v1.fX, v1.fY, v1.fZ);
1287 tr.SetBaseVec(2, v2.fX, v2.fY, v2.fZ);
1288 tr.SetBaseVec(3, axis.fX, axis.fY, axis.fZ);
1289 tr.Move3PF(gCenter.fX, gCenter.fY, gCenter.fZ);
1291 TGeoHMatrix*
out =
new TGeoHMatrix();
1292 tr.SetGeoHMatrix(*out);
1300 const HepGeom::Transform3D idtr;
1308 for(
int c = 0;
c < 8; ++
c )
1310 points[
c*2 ] = co[
c].x();
1311 points[
c*2+1] = co[
c].y();
1313 TGeoShape* solid =
new TGeoArb8(cell->
param()[0],
points);
1326 CaloVolMap caloShapeMap;
1332 for( std::vector<DetId>::const_iterator it = vid.begin(),
end = vid.end(); it !=
end; ++it)
1337 if (!cell) { printf(
"ecalBarrel cell not a TruncatedPyramid !!\n");
return; }
1339 TGeoVolume* volume =
nullptr;
1340 CaloVolMap::iterator volIt = caloShapeMap.find(cell->
param());
1341 if ( volIt == caloShapeMap.end())
1344 caloShapeMap[cell->
param()] = volume;
1347 volume = volIt->second;
1352 std::stringstream nname;
1354 AddLeafNode(holder, volume, nname.str().c_str(), mtx);
1363 for( std::vector<DetId>::const_iterator it = vid.begin(),
end = vid.end(); it !=
end; ++it)
1368 if (!cell) { printf(
"ecalEndcap cell not a TruncatedPyramid !!\n");
continue;}
1370 TGeoVolume* volume =
nullptr;
1371 CaloVolMap::iterator volIt = caloShapeMap.find(cell->
param());
1372 if ( volIt == caloShapeMap.end())
1376 caloShapeMap[cell->
param()] = volume;
1379 volume = volIt->second;
1384 std::stringstream nname;
1386 AddLeafNode(holder, volume, nname.str().c_str(), mtx);
static void localCorners(Pt3DVec &vec, const CCGFloat *pv, Pt3D &ref)
TGeoMedium * m_dummyMedium
T getUntrackedParameter(std::string const &, T const &) const
std::shared_ptr< FWTGeoRecoGeometry > produce(const FWTGeoRecoGeometryRecord &)
const TrackerGeometry * m_trackerGeom
virtual float length() const =0
const CaloGeometry * m_caloGeom
unsigned int tidRing(const DetId &id) const
virtual const std::array< const float, 4 > parameters() const
edm::ESHandle< GlobalTrackingGeometry > m_geomRecord
int zside() const
get the z-side of the cell (1/-1)
TGeoShape * createShape(const GeomDet *det)
unsigned int pxfDisk(const DetId &id) const
const std::vector< const RPCRoll * > & rolls() const
Return a vector of all RPC rolls.
unsigned int tecRing(const DetId &id) const
ring id
CaloCellGeometry::Pt3D Pt3D
unsigned int pxbLadder(const DetId &id) const
unsigned int side(const DetId &id) const
const Bounds & bounds() const
unsigned int tidWheel(const DetId &id) const
unsigned int pxbModule(const DetId &id) const
char const * what() const override
std::map< TGeoShape *, TGeoVolume * > m_shapeToVolume
const Plane & surface() const
The nominal surface of the GeomDet.
void addCaloTowerGeometry()
void setWhatProduced(T *iThis, const es::Label &iLabel=es::Label())
virtual float width() const =0
const DepRecordT & getRecord() const
unsigned int tibSide(const DetId &id) const
TGeoMedium * GetMedium(ERecoDet)
const CCGFloat * param() const
unsigned int tidSide(const DetId &id) const
const TrackerTopology * m_trackerTopology
CaloCellGeometry::Pt3D Pt3D
static void localCorners(Pt3DVec &vec, const CCGFloat *pv, Pt3D &ref)
const DetContainer & detsTEC() const
void addHcalCaloGeometryOuter()
TGeoHMatrix * getEcalTrans(CaloCellGeometry::CornersVec const &gc)
static const int SubdetId
void addEcalCaloGeometry()
std::map< std::string, TGeoShape * > m_nameToShape
CaloCellGeometry::Pt3DVec Pt3DVec
unsigned int tobSide(const DetId &id) const
int ieta() const
get the cell ieta
const DetContainer & detsPXB() const
const std::vector< const GEMEtaPartition * > & etaPartitions() const
Return a vector of all GEM eta partitions.
const TrackingGeometry * slaveGeometry(DetId id) const
Return the pointer to the actual geometry for a given DetId.
DetId geographicalId() const
The label of this GeomDet.
void addHcalCaloGeometryBarrel()
int ieta() const
get the crystal ieta
std::map< ERecoDet, TGeoMedium * > m_recoMedium
virtual const DetContainer & dets() const =0
Returm a vector of all GeomDet (including all GeomDetUnits)
unsigned int tibModule(const DetId &id) const
const DetContainer & detsTIB() const
TGeoShape * makeEcalShape(const TruncatedPyramid *cell)
TGeoVolume * GetDaughter(TGeoVolume *mother, const char *prefix, ERecoDet cidx, int id)
unsigned int pxbLayer(const DetId &id) const
unsigned int tecModule(const DetId &id) const
const std::vector< const GEMSuperChamber * > & superChambers() const
Return a vector of all GEM super chambers.
const std::vector< ME0EtaPartition const * > & etaPartitions() const
Return a vector of all ME0 eta partitions.
virtual float thickness() const =0
static void localCorners(Pt3DVec &vec, const CCGFloat *pv, Pt3D &ref)
int zside() const
get the z-side of the tower (1/-1)
CaloCellGeometry::Pt3D Pt3D
unsigned int tecOrder(const DetId &id) const
unsigned int tobModule(const DetId &id) const
CaloCellGeometry::Pt3DVec Pt3DVec
CornersVec const & getCorners() const
Returns the corner points of this cell's volume.
A base class to handle the particular shape of Ecal Xtals. Taken from ORCA Calorimetry Code...
std::vector< DetId > getValidDetIds() const
Get the list of all valid detector ids.
void addPixelForwardGeometry()
~FWTGeoRecoGeometryESProducer(void) override
FWTGeoRecoGeometryESProducer(const edm::ParameterSet &)
const DetContainer & detsPXF() const
void addHcalCaloGeometryForward()
const DetContainer & detsTOB() const
std::shared_ptr< const CaloCellGeometry > getGeometry(const DetId &id) const
Get the cell geometry of a given detector id.
const RotationType & rotation() const
TGeoVolume * GetTopHolder(const char *prefix, ERecoDet cidx)
int ieta() const
get the tower ieta
unsigned int tobRod(const DetId &id) const
std::shared_ptr< FWTGeoRecoGeometry > m_fwGeometry
const PositionType & position() const
void addHcalCaloGeometryEndcap()
T const * product() const
void addPixelBarrelGeometry()
unsigned int pxfPanel(const DetId &id) const
unsigned int pxfBlade(const DetId &id) const
CaloCellGeometry::Pt3DVec Pt3DVec
TGeoVolume * createVolume(const std::string &name, const GeomDet *det, ERecoDet=kDummy)
const DetContainer & detsTID() const
int zside() const
get the z-side of the crystal (1/-1)
unsigned int tibOrder(const DetId &id) const